
AMMOS Datastreams

Reference Document

Re
fer

en
ce

 D
oc

um
en

t

4094.8964.02 ─ 04
(XìçÎ2)

Ra
dio

mo
nit

or
ing

 &
 R

ad
iol

oc
ati

on

© 2014 Rohde & Schwarz GmbH & Co. KG
Mühldorfstr. 15, 81671 München, Germany
Phone: +49 89 41 29 - 0
Fax: +49 89 41 29 12 164
E-mail: info@rohde-schwarz.com
Internet: www.rohde-schwarz.com
Subject to change – Data without tolerance limits is not binding.
R&S® is a registered trademark of Rohde & Schwarz GmbH & Co. KG.
Trade names are trademarks of the owners.

mailto:info@rohde-schwarz.com
http://www.rohde-schwarz.com

ContentsAMMOS Datastreams

3Reference Document 4094.8964.02 ─ 04

Contents
1 Generic Format of Datastreams..5

2 IF (Baseband) Datastreams...8
2.1 IF Data Format... 8

2.2 IF DDCE Data Format..16

3 Audio Datastream.. 20

4 Tuner Datastreams...24
4.1 Scan Data Format..24

4.2 Signal Level Indicator Data Format... 27

4.3 Tuner PIF Panorama Data Format... 28

4.4 Tuner HF (EM010) Data Formats..28

5 Spectrum Datastreams..34
5.1 Spectrum Data Format..34

5.2 Segmentation Spectrum Data Format...37

6 Symbol Datastreams..39

7 Time Domain Datastreams..42
7.1 Time Domain Data Format..42

7.2 Instantaneous Data Format..43

8 Decoder Datastreams.. 46
8.1 Image Data Format..46

8.2 Decoded Text Data Format...49

8.3 Transmission System Result (TSR) Data Formats.. 51

9 Detector Datastreams..70
9.1 Emission List Data Format...70

9.2 Spectral Detector List Data Format... 72

9.3 Burst Emission List Data Format.. 74

10 Statistics Datastreams...77
10.1 Histogram Data Format.. 77

10.2 Hop Density Waterfall Data Format... 79

ContentsAMMOS Datastreams

4Reference Document 4094.8964.02 ─ 04

11 PDW and IQDW Datastreams..82
11.1 Pulse Descriptor Words (PDW) Datastream... 82

11.2 IQ Descriptor Words (IQDW) Datastream... 84

A Extras.. 88
A.1 Data types definitions...88

A.2 File Types...89

Glossary..92

Index..94

Generic Format of DatastreamsAMMOS Datastreams

5Reference Document 4094.8964.02 ─ 04

1 Generic Format of Datastreams
The document describes digital transmissions between the following
Rohde & Schwarz® radio monitoring and radiolocation devices for signal analysis: R&S
CA100, R&S CA120, R&S GX400, R&S GX410, R&S GX430, R&S GX420, R&S
GX425, R&S GX460, R&S GX465, R&S CA250, R&S TPA.

All datastreams described in this document have the same generic format. They are
structured into frames having a generic frame header and, depending on data type to
be transmitted, specific payload elements.

Generic Frame format

All datastreams have a frame based structure using the same format, consisting of a
global Frame header coupled with a data-type specific Frame body (i.e. the frame pay-
load).

The header and the body of the frame consist of a number of 32-bit words. The Frame
header has a predefined structure and size. The size and structure of the Frame body
depends on the payload type. This is an important factor in the choice of the frame
size.

Fig. 1-1: Generic Datastream Frame structure

Global Frame header

The Frame header contains information used for frame synchronization, frame
sequencing, payload identification and frame sizing. It consist of six 32-bit words as
depicted in the following figure and is defined in
rs_gx40x_global_frame_header_if_defs.h

Generic Format of DatastreamsAMMOS Datastreams

6Reference Document 4094.8964.02 ─ 04

Table 1-1: Global Frame header (structure name: typFRH_FRAMEHEADER)

Word
position
in frame

Member name

Member type

Description

1 uintMagicWord

ptypUINT

Magic Word - 32-bit word, always identical (0xFB746572), defines
the start of the Frame header and is used for frame synchroniza-
tion. The Magic Word and the Frame Length are used to identify
the beginning of each frame.

2 uintFrameLength

ptypUINT

Frame Length - gives the length of the frame including both Frame
header and Frame body. The length is expressed in 32-bit words.
The minimum length is six in case the Frame body is empty and the
maximum length is limited to the value:
● kFRH_FRAME_LENGTH_MAX = 0x100000 (1048576 = 220)

in case of normal frames
● kFRH_FRAME_LENGTH_MAX_EX = 0x400000 (64*

1048576 = 226) in case of extended frames (an extended
frame is marked by Bit#0 of the Reserved word of the frame
header). Only some datastream types allow the extended
frame size, see the definitions in the
rs_gx40x_global_frame_types_if_defs.h.

The next Magic Word which denotes the next frame in this data
stream will occur uintFrameLength [32-bit words] after the Magic
Word in this frame.

3 uintFrameCount

ptypUINT

Frame Count - sequence counter modulo 232. Determines the posi-
tion of this frame in the datastream and is used for sequencing and
lost frame detection.

4 uintFrameType

ptypUINT

Frame Type - identifies the data type contained in this frame and
gives the specific structure of the frame payload. The complete list
of frame types (i.e. datastream types) can be found in the following
header file: rs_gx40x_global_frame_types_if_defs.h

5 uintDataHeaderLength

ptypUINT

Data Header Length - gives the length of the Data header posi-
tioned at the beginning of the Frame body. The length is expressed
in 32-bit words (0 means no data header). This information can be
used by the software to recognize the version of the datastream for-
mat and thus its compatibility to read and correctly interpret the
datastream. It enables forward-compatibility with future datastream
versions. This value will not vary for a continuous data stream.

6 uintReserved

ptypUINT

● Bits #31 to #1 - Reserved (not yet used, must be 0)
● Bit #0 - Marks the frame with extended size (up to

kFRH_FRAME_LENGTH_MAX_EX 32-bit words).

The Data Header Length information is very important for the correct addressing of the
data samples. This information gives the exact position in the frame where the Data
body begins independent of the version of the Data header (different versions consist
of different number of parameters). From the frame beginning (indicated by the Magic
Word), the first six 32-bit words represent the Frame header and the next Data Header
Length 32-bit words represent the Data header. After 6+uintDataHeaderLength
32-bit words starts the Data body, i.e. the first data sample.

Frame body

The Frame body contains the payload of the frame and its structure depends on the
datastream type, as defined by the Frame Type element in the Frame header.

Generic Format of DatastreamsAMMOS Datastreams

7Reference Document 4094.8964.02 ─ 04

The Frame body is structured into a Data header followed by the Data body. The Data
header contains datastream specific information of the payload.

Bit numbering
Allover this document it is assumed that bit #0 is the bit of least numeric significance.

Data types definitions
The datastreams described in this document use custom data type definitions, such as
ptypUINT, that ensure the 32-bit format on all platforms. Detailed information about the
custom data types used can be found in chapter A.1, "Data types definitions",
on page 88.

IF (Baseband) DatastreamsAMMOS Datastreams

8Reference Document 4094.8964.02 ─ 04

2 IF (Baseband) Datastreams

2.1 IF Data Format

Intermediate Frequency (IF) Data format is used for the transmission of real or com-
plex baseband signals. The IF signal is sent along with information that characterize
the datastream and datastream source, and contains also the inband signaling of the
signal processing unit.

As most of the received signals are I/Q (complex) baseband signals, this documenta-
tion uses the terms IF and I/Q interchangeably.

The IF Data format is valid for the following datastream types:

Table 2-1: IF Datastream types

Datastream type ID Description Sample data type

ekFRH_DATASTREAM__IFDATA_
32RE_32IM_FIX

ekFRH_DATASTREAM__IFDATA
_32RE_32IM_FIX_RESCALED

Complex IF Data samples, 32-bit real-part
and 32-bit imaginary-part, fixed point

typIFD_SAMPLE_
32RE_32IM_FIX

ekFRH_DATASTREAM__IFDATA_
16RE_16IM_FIX

Complex IF Data samples, 16-bit real-part
and 16-bit imaginary-part, fixed point

typIFD_SAMPLE_
16RE_16IM_FIX

ekFRH_DATASTREAM__IFDATA_
16RE_16RE_FIX

Real IF Data samples, 16-bit real-part, two
samples in each 32-bit word, fixed point

typIFD_SAMPLE_
16RE_16RE_FIX

ekFRH_DATASTREAM__IFDATA_
32RE_32IM_FLOAT_RESCALED

Complex IF Data samples, 32-bit real-part
und 32-bit imaginary-part, floating point

typIFD_SAMPLE_
32RE_32IM_FLOAT

For the above datastream types, the same frame body structure is used, the only dif-
ference is the carried sample data type (as given in the table above).

IF Data Frame Structure

The structure of the IF Datastream is defined in the
rs_gx40x_global_ifdata_header_if_defs.h header file.

The Data Frame consists of the global Frame header of type typFRH_FRAMEHEADER,
as described in "Global Frame header" on page 5, followed by the datastream-specific
Frame body.

The corresponding "Frame Type" value from the Frame header for this datastream
type can be found in the global frame types header file:
rs_gx40x_global_frame_types_if_defs.h.

The Frame body consists of: the Data header which describes the datastream payload
and the Data body which contains the actual datastream payload.

IF Data Format

IF (Baseband) DatastreamsAMMOS Datastreams

9Reference Document 4094.8964.02 ─ 04

Fig. 2-1: IF Data frame format

Limited use of the frame structure definition: typIFD_IFDATA_FRAME
The structure definition for the entire frame format, defined in the corresponding
header file, is used to illustrate the structure of the data frame and is also suitable for
data generation. Do not use this structure for data parsing because new frame ver-
sions can use extended header types which might lead to wrong addressing in the
frames. Use the Data Header Length information from the global Frame Header to
correctly access the data samples after the Data Header.

IF Data Header

The Data header describes the datastream payload (such as number of Data samples
contained in this frame), and contains common properties of the Data samples.

The basic Data header contains a number of fields, that are always sent.

The extended Data header contains extra information fields sent after the fields of the
basic structure.

The length of the Data header, as specified by the uintDataHeaderLength parame-
ter from the Frame header, gives information about which Data header type is used,
the basic or the extended one.

The IF Data header structure, of type typIFD_IFDATAHEADER, is described in the fol-
lowing table (Data header length = 14 [32-bit words]).

IF Data Format

IF (Baseband) DatastreamsAMMOS Datastreams

10Reference Document 4094.8964.02 ─ 04

Table 2-2: IF DATA header (typIFD_IFDATAHEADER)

Word
position
in frame

Member name

Member type

Description

7 uintDatablockCount

ptypUINT

Datablock Count - represents the
number of IF signal data blocks in
the IF Data frame.

8 uintDatablockLength

ptypUINT

Datablock Length - The number
32-bit words in each IF signal data
block excluding the data block
header (has to be of the form 2N

with N≥2). This may not be the
same as the number of IF signal
data samples, as the size of a sam-
ple may be 16, 32 or 64 bits.

9

10

bigtimeTimeStamp

ptypBIGTIME

64-bit Timestamp [µs] - Absolute
time of the first IF signal data sam-
ple, in the first data block of IF sig-
nal data in this frame.

11 uintStatusword

ptypUINT

Status Word - extra information
that help the receiver react by
parameter changes.
● Bit #31 - Reserved
● Bit #30 - dBFS flag

– 1 indicates that all sam-
ples in this frame are con-
sidered to be dBFS (dB
full scale).

– 0 indicates that the values
Antenna Voltage Refer-
ence and Reciprocal gain
correction (see the Status
Word description of the
datablock header) can be
used to calculate the cor-
responding level for each
sample.

● Bits #29 to #8 - Reserved (not
yet used, must be 0)

● Bits #7 to #0 - User flags for
special signaling between IF
Data processing components.

12 uintSignalSourceID

ptypUINT

Signal Source Identifier or
antenna identifier (value 0x0 if not
used)

IF Data Format

IF (Baseband) DatastreamsAMMOS Datastreams

11Reference Document 4094.8964.02 ─ 04

Word
position
in frame

Member name

Member type

Description

13 uintSignalSourceState

ptypUINT

Current Signal Source State
(value 0x0 if not used)
● gives the Configuration Set

Identifier of the Task Data Set
(in GX400) currently being
applied by the IF signal source
OR

● the current Scan Step Number
in the case of scan operation
In the case of memory scan-
ning, the scan step number
starts at 0 for the scan channel
(memory location) configured
with the lowest frequency, and
increments (+1) for every
channel configured for scan-
ning in the memory scan list.
In the case of frequency scan-
ning, the scan step number
starts at 0 for the scan step at
the lowest frequency, and
increments (+1) for every step
taken within the configured fre-
quency scan range.

14

15

uintTunerFrequency_Low

uintTunerFrequency_High

ptypUINT

64-bit Tuner Center Frequency
[Hz] - least significant 32 bits (uint-
TunerFrequency_Low) followed by
most significant 32 bits (uintTuner-
Frequency_High)

16 uintBandwidth

ptypUINT

IF signal 3dB Bandwidth [Hz]

17 uintSamplerate

ptypUINT

Sample Rate of the AD Converter
[samples / second] - due to digital
filtering within the source, the
resulting sample rate of the sam-
ples within this frame is: Sample
Rate × Interpolation / Decimation

18 uintInterpolation

ptypUINT

Interpolation Factor referred to the
ADC signal sample rate. The value
0x1 indicates no interpolation

IF Data Format

IF (Baseband) DatastreamsAMMOS Datastreams

12Reference Document 4094.8964.02 ─ 04

Word
position
in frame

Member name

Member type

Description

19 uintDecimation

ptypUINT

Decimation Factor referred to the
ADC signal sample rate. The value
0x1 indicates no decimation

20 intAntennaVoltageRef

ptypINT

Antenna Voltage Reference (Ant-
VoltRef) is the device specific cor-
rection value for the tuner front-end
Rx attenuation (expresses anything
from antenna input connector to
ADC) and is expressed in [0.1
dBµV]. This is the level which,
while the AGC amplification is at
maximum attenuation, is required at
the antenna input to produce the
full scale value at the ADC. Using
this value together with the Recip-
Gain (Reciprocal Gain) value, one
can calculate the true signal level at
the antenna input connector (see
"Data samples" on page 14). The
RecipGain value is given in the Sta-
tus Word of the IF Datablock
header table 2-4

The Extended IF Data header structure, of type typIFD_IFDATAHEADER_EX, is
described in the following table (total Data header length = 19 [32-bit words]).

Table 2-3: Extended IF DATA header (typIFD_IFDATAHEADER_EX) - extra fields only

Word
position
in frame

Member name

Member type

Description

21

22

bigtimeStartTimeStamp

ptypBIGTIME_NS

64-bit Timestamp [ns] - Absolute time of the first sample of the
datastream since starting the datastream ("Sample Counter" == 0).
This value remains constant until the datastream is stopped and
started again or until the tuner performs an internal synchronization.

23

24

uintSampleCounter_
Low

uintSampleCounter_
High

ptypUINT

Sample Count - 64-bit counter from the first sample of the first dat-
ablock in this frame. Note that this value can be reset when the
datastream is stopped and started again or when the tuner per-
forms an internal synchronization. The Sample Count of the next IF
frame can be deduced from Datablock Count, Datablock Length
and the number of 32-bit words per sample. In this way the number
of sample Dropouts can be estimated (that can be replaced with
Null values). The exact time is given by t = Start Time + Sample
Count * Decimation / (Sample rate * Interpolation).

25 intKFactor

ptypINT

kFactor - Correction factor of the current antenna, given in
0.1dB/m. Used to determine the field strength (in [dBµV/m]) at the
antenna from the voltage level at the antenna input of the receiver.
Contains antenna gain, cable attenuation, antenna switch matrix
attenuation and anything else from air to antenna input. (the value
0x80000000 is used if no kFactor is defined).

IF Data Format

IF (Baseband) DatastreamsAMMOS Datastreams

13Reference Document 4094.8964.02 ─ 04

The values contained in the data header fields represent the status at the beginning of
the frame. A modification happening during the transmission of a frame will only be
noted in the data header of the next frame.

IF Data Body

The IF Data body contains zero or more IF Data samples arranged as an array of
typIFD_DATABLOCK data blocks (the actual IF signal datastream payload). The num-
ber of datablocks is specified by the Datablock Count parameter from the Data header.

Each datablock (typIFD_DATABLOCK) has its own datablock header:
datablockheaderDatablockHeader (of type typIFD_DATABLOCKHEADER) and a
datablock body that contains the actual data sample.

Table 2-4: IF Datablock header (typIFD_DATABLOCKHEADER)

Member name

Member type

Description

uintStatusword

ptypUINT

Status of the Datablock
● Bits #31 to #16 - RecipGain - Automatic Gain Control (AGC) Reciprocal Gain

Correction value that was applied when generating the following IF Data sam-
ples. The RecipGain is represented as 16-bit unsigned decimal value (the 16-bit
unsigned decimal has to be divided by 216 = 65535 to obtain the unsigned frac-
tional between 0 and 1). For example a correction value of -17.5dB gives a
value for RecipGain of 0.1333 which will be represented as 0x2220. Using this
value together with the value for the antenna voltage reference, one can calculate
the true signal level at the antenna input connector (see "Data samples"
on page 14).

● Bits #15 to #8 - Reserved (must be 0).
● Bits #7 to #2 - User flags for special signaling between IF Data processing com-

ponents. Set to 0 if not used.
● Bit #1 - Blanking flag - this flag is set (1) to indicate that the data in this block

may have been falsified by some external event.
● Bit #0 - Invalidity flag - this flag is set (1) to indicate that the data within this

block may be corrupt (e.g. the input signal exceeded the range of the AD con-
verter, or the analog signal input from which the data was converted was overloa-
ded), OR any one of the fields in the IF datastream header does not represent the
data in this block correctly.

The datablock body is defined as an array of size uintDatablockLength with
uintData elements interpreted using the corresponding sample type format ("typ-
IFD_SAMPLE...." as described in the following table). The actual IF Data samples have
to be extracted from the array. Their structure and size is given by the IF datastream
format (table 2-1). The possible IF data sample formats are described in the table
below:

Table 2-5: IF Data sample format

Sample type Sample
format

Most significant bits Least significant bits Data type

typIFD_SAMPLE
_32RE_32IM_FIX

typIFD_SAMPLE
_32RE_32IM_FLOAT

64-bit I/Q
format

First 32-bit Real component ptypINT or ptyp-
FLOAT_SP

Second 32-bit Imaginary component ptypINT or ptyp-
FLOAT_SP

IF Data Format

IF (Baseband) DatastreamsAMMOS Datastreams

14Reference Document 4094.8964.02 ─ 04

Sample type Sample
format

Most significant bits Least significant bits Data type

typIFD_SAMPLE
_16RE_16IM_FIX

32-bit I/Q
format

16-bit Imaginary compo-
nent

16-bit Real component ptypINT

typIFD_SAMPLE
_16RE_16RE_FIX

16-bit
Real for-
mat

16-bit sample number
I+1

16-bit sample number
I

ptypINT

The term 'fix' ('fixed' point) indicates signed (2s-complement) fixed point fractional num-
bers.

Data samples

The absolute signal level in [dBµV] may be calculated as follows:

Level [dBµV] = 10*log(Irel
2+Qrel

2) [dB] + 20*log (RecipGain / 216) [dB] + 0.1*AntVoltRef
[dBµV]

where I and Q are the real and imaginary parts of each signal sample.

The absolute signal level in [µV] may be calculated as follows:

I [µV] = Irel * (RecipGain / 216) * AntVoltLin

Q [µV] = Qrel * (RecipGain / 216) * AntVoltLin

where AntVoltLin [µV] = 10(0.1 * AntVoltRef) / 20

Depending on the sample format, as presented in table 2-5, I and Q values can be rep-
resented as signed integers on 32-bits (Iint32) or 16-bits (Iint16) or as 32-bit float values
(Ifloat). The relative values of I and Q can be calculated with the following formulas
(same applies for Qrel):

● Irel = Iint32/(231-1) where Iint32 is a signed integer, the most significant bit gives the
sign (0 is positive, 1 is negative)

● Irel = Iint16/(215-1) where Iint16 is a signed integer, the most significant bit gives the
sign (0 is positive, 1 is negative)

● Irel = Ifloat

In the first two cases Irel and Qrel represent relative signal level values between -1 and
1. The absolute signal levels are retrieved through the parameter AntVoltRef as pre-
sented above. In the third case, Irel and Qrel can represent directly the absolute signal
levels - in this case the RecipGain and AntVoltRef are not used (and are set to Recip-
Gain=1, AntVoltRef=0).

Example

Word
position
in frame

Frame component name Hex value Description

1 uintMagicWord FB746572 Frame synchronisation

2 uintFrameLength 0000001E Entire frame length = 30 (in 32-bit units)

IF Data Format

IF (Baseband) DatastreamsAMMOS Datastreams

15Reference Document 4094.8964.02 ─ 04

Word
position
in frame

Frame component name Hex value Description

3 uintFrameCount 000000FE Running frame number = 254

4 uintFrameType 00000004 The type of data contained in this frame

5 uintDataHeaderLength 0000000E Data Header length = 14 (in 32-bit units)

6 uintReserved 00000000 Reserved field

7 uintDatablockCount 00000002 Number of data blocks in this frame = 2

8 uintDatablockLength 00000004 The data block length (in 32-bit units) excluding
the data block header = 4. Every data block in
this frame will have the same length.

9

10

bigtimeTimeStamp 00035CED

1D63F4D0

Absolute time [µs] of the first IF signal data sam-
ple in this frame

11 uintStatusword 00000000 No status change indications.

12 uintSignalSourceID 00000003 Antenna ID = 3

13 uintSignalSourceState 00000A73 Tuner scan status = position 2675

14 uintTunerFrequency_Low 42Ef9EC0 Tuner center frequency = 1,123 GHz

15 uintTunerFrequency_High 00000000

16 uintBandwidth 01312d00 The IF Data bandwidth = 20 MHz

17 uintSamplerate 0493E000 ADC sample rate = 76,8 Msample/s

18 uintInterpolation 00000001 Interpolation factor = none

19 uintDecimation 00000003 Decimation factor referred to the ADC sample
rate = 3

20 intAntennaVoltageRef 0000001E Antenna reference voltage = 3dBµV

21 uintStatusword 22200000 Beginning of the first Datablock.

Statusword contains AGC correction factor =
0.1333 and no flags indications.

22 uintData 23873454 Real part of first sample

23 uintData 34234523 Imaginary part of first sample

24 uintData 56567543 Real part of second sample

25 uintData 34563456 Imaginary part of second sample

26 uintStatusword 41000004 Beginning of the second Datablock.

Statusword contains AGC correction factor =
0.2539 and one user flag indication.

27 uintData 45345222 Real part of third sample

28 uintData 546672ab Imaginary part of third sample

29 uintData 5BB25346 Real part of fourth sample

30 uintData BBF7673e Imaginary part of fourth sample

IF Data Format

IF (Baseband) DatastreamsAMMOS Datastreams

16Reference Document 4094.8964.02 ─ 04

2.2 IF DDCE Data Format

The IF DDCE Data format is used for datastreams containing DDC signal extraction
from ESMD tuners.

The IF DDCE Data format is valid for the following frame types:

Table 2-6: IF DDCE Datastream types

Frame type ID Description Sample type ID

ekFRH_DATASTREAM__DDCE
_IFDATA_32RE_32IM_FIX

Datastream for multi-channel IF Datastreams
as used in EMSD-DDCE, 32-bit real- and 32-
bit imaginary-part, fixed point, not rescaled.

typIFD_SAMPLE_
32RE_32IM_FIX

ekFRH_DATASTREAM__DDCE
_IFDATA_16RE_16IM_FIX

Datastream for multi-channel IF Datastreams
as used in EMSD-DDCE, 16-bit Real- and 16-
bit Imaginary-part, fixed point, not rescaled.

typIFD_SAMPLE_
16RE_16IM_FIX

IF DDCE Data Frame Structure

The structure of the IF DDCE Datastream is defined in the
rs_gx40x_ifdata_ddce_header_if_defs.h header file.

The Data Frame consists of the global Frame header of type typFRH_FRAMEHEADER,
as described in "Global Frame header" on page 5, followed by the datastream-specific
Frame body.

The corresponding "Frame Type" value from the Frame header for this datastream
type can be found in the global frame types header file:
rs_gx40x_global_frame_types_if_defs.h.

The Frame body consists of: the Data header which describes the datastream payload
and the Data body which contains the actual datastream payload.

Fig. 2-2: IF DDCE Data frame format

Limited use of the frame structure definition: typIFD_IFDATA_DDCE_FRAME
The structure definition for the entire frame format, defined in the corresponding
header file, is used to illustrate the structure of the data frame and is also suitable for
data generation. Do not use this structure for data parsing because new frame ver-
sions can use extended header types which might lead to wrong addressing in the
frames. Use the Data Header Length information from the global Frame Header to
correctly access the data samples after the Data Header.

IF DDCE Data Format

IF (Baseband) DatastreamsAMMOS Datastreams

17Reference Document 4094.8964.02 ─ 04

IF DDCE Data Header

The Data header describes the datastream payload (such as number of Data samples
contained in this frame), and contains common parameters of the Data samples.

The IF DDCE Data header structure, of type typIFD_IFDATAHEADER_DDCE, is
described in the following table (Data header length = 9).

Table 2-7: IF DDCE Data header (typIFD_IFDATAHEADER_DDCE)

Word
position
in frame

Member name

Member type

Description

7 uintSignalSourceID

ptypUINT

Signal Source Identifier - this index identifies which channel
this frame belongs to.
● Bits 31..30: Signal Source Group ID

0: DDCE instance operated by R&S ESMD-DDCE
1: DDCE instance operated by R&S ESMD-ST

● Bits 18..29: reserved (0)
● For statically allocated instances bound to option R&S

ESMD-DDCE
Bits 7:0: 0...127: channel number

● For burst emission synthesis, bound to option R&S ESMD-
ST
Bits 17:0: 0… 262143 : burst emission ID

8 intAntennaVoltageRef

ptypINT

Antenna Voltage Reference is the device / parameterization
specific correction value for the tuner front-end and the connec-
ted antenna. This value typically will not be subject of change on
a frame by frame basis. It will rather change due to reconfigura-
tion (in the order of seconds) to the signal processing path.
● Bits #31 to #16: Conversion factor (kFactor) in units

0.1dB/m. These bits are extracted to represent a signed
integer number. This factor contains all contributions
between air and antenna input connector such as antenna
gain, cable attenuation, antenna switch matrix attenuation.
(0x8000 if no kFactor is defined).

● Bits #15 to #0: Rx attenuation value (RxAtt) in units of
0.1dBµV. These bits are extracted to represent a signed
integer number. This value expresses all contributions
between receiver’s antenna input connector and the ADC.

The level in dBµV at the receiver’s antenna input connector is
given by:

Level = 10*log(I2+Q2) + 0.1*RxAtt

The field strength in 0.1dB/m is calculated by:

Field strength = Level + 0.1 * kFactor

9 intReserved

ptypUINT

For future use, should be 0.

10

11

bigtimeTimeStamp

ptypBIGTIME

64-bit Timestamp [µs] - Absolute time of the first IF signal data
sample, in the first data block of IF signal data in this frame.

12 uintTunerFrequency_Low

ptypUINT

64-bit Tuner Center Frequency [Hz] - least significant 32 bits
(uintTunerFrequency_Low) followed by most significant 32 bits
(uintTunerFrequency_High)

13 uintTunerFrequency_High

ptypUINT

IF DDCE Data Format

IF (Baseband) DatastreamsAMMOS Datastreams

18Reference Document 4094.8964.02 ─ 04

Word
position
in frame

Member name

Member type

Description

14 fBandwidth

ptypFLOAT_SP

IF signal 3dB Bandwidth [Hz].

15 fSamplerate

ptypFLOAT_SP

Sample Rate [samples / second].

The values contained in the data header fields represent the status at the beginning of
the frame. A modification happening during the transmission of a frame will only be
noted in the data header of the next frame.

IF DDCE Data Body

The IF Data body consists of only one datablock (of type typIFD_DATABLOCK_DDCE)
that contains a datablock header datablockheader_ddceDatablockHeader (of
type: typIFD_DATABLOCKHEADER_DDCE) and a datablock body that contains the
actual IF samples.

Table 2-8: IF DDCE Datablock header (typIFD_DATABLOCKHEADER_DDCE)

Member name

Member type

Description

uintStatusword

ptypUINT

Status of the Datablock
● Bit #31 - Reserved
● Bit #30 - dBFS flag

– 1 indicates that all samples in this frame are considered to be dBFS (dB full
scale).

– 0 indicates that the values intAntennaVoltageRef and "Reciprocal gain
correction" (see Datablock Status of the datablock header) can be used to
calculate the corresponding level for each sample.

● Bits #29 to #10 - Reserved (must be 0).
● Bit #9 - Blanking flag - this flag is set (1) to indicate that the data in this block

may have been falsified by some external event, like PTT transmissions that
affect the signal quality.

● Bit #8 - Invalidity flag - this flag is set (1) to indicate that the data within this
block may be corrupt (e.g. the AD converter with which the data was produced
was over-range, or the analog signal input from which the data was converted
was overloaded), OR any one of the fields in the IF datastream header does not
represent the data in this block correctly.

● Bits #7 to #0 - User flags for special signaling between IF Data processing com-
ponents. Set to 0 if not used.
Bit 0 : Short-time synthesis end-of-frame flag.
– 1 : this frame denotes the last frame of a signal synthesis for a particular

emission
– 0 : there are more frames to come

This end-of-frame flag is only valid if SignalSourceGroupID in field
uintSignalSourceID of the previous data header carries the value 1.

The Datablock body is defined as an array of size uintFrameLength - 6 -
uintDataHeaderLength (the size should be ≥ 1) with elements uintData of type
ptypUINT. The actual Data samples have to be extracted from the array. Their struc-
ture and size depend on the IF DDCE datastream format (table 2-6). The possible IF
data sample formats are given in the table below:

IF DDCE Data Format

IF (Baseband) DatastreamsAMMOS Datastreams

19Reference Document 4094.8964.02 ─ 04

Table 2-9: IF DDCE Data sample format

Sample type ID Sample format type Most significant bits Least significant bits

typIFD_SAMPLE
_32RE_32IM_FIX

64-bit I/Q format First 32-bit Real component

Second 32-bit Imaginary component

typIFD_SAMPLE
_16RE_16IM_FIX

32-bit I/Q format 16-bit Imaginary compo-
nent

16-bit Real component

IF DDCE Data Format

Audio DatastreamAMMOS Datastreams

20Reference Document 4094.8964.02 ─ 04

3 Audio Datastream
The Audio Data format describes the ekFRH_DATASTREAM__AUDIODATA datastream
type.

Audio Data Frame Structure

The structure of the Audio Datastream is defined in the
rs_gx40x_global_audioformat_if_defs.h header file.

The Data Frame consists of the global Frame header of type typFRH_FRAMEHEADER,
as described in "Global Frame header" on page 5, followed by the datastream-specific
Frame body.

The corresponding "Frame Type" value from the Frame header for this datastream
type can be found in the global frame types header file:
rs_gx40x_global_frame_types_if_defs.h.

The Frame body consists of: the Data header which describes the datastream payload
and the Data body which contains the actual datastream payload.

Fig. 3-1: Audio Data frame format

Limited use of the frame structure definition: typAUDIODATAFRAME
The structure definition for the entire frame format, defined in the corresponding
header file, is used to illustrate the structure of the data frame and is also suitable for
data generation. Do not use this structure for data parsing because new frame ver-
sions can use extended header types which might lead to wrong addressing in the
frames. Use the Data Header Length information from the global Frame Header to
correctly access the data samples after the Data Header.

Audio Data Header

The Data header describes the datastream payload (such as number of Data samples
contained in this frame), and contains common parameters of the Data samples.

The basic Data header contains a number of fields, that are always sent.

The extended Data header contains extra information fields sent after the fields of the
basic structure.

Audio DatastreamAMMOS Datastreams

21Reference Document 4094.8964.02 ─ 04

The length of the Data header, as specified by the uintDataHeaderLength parame-
ter from the Frame header, gives information about which Data header type is used,
the basic or the extended one.

The Audio Data header structure, of type typAUDIODATAHEADER, is described in the
following table (Data header length = 9).

Table 3-1: Audio Data header (typAUDIODATAHEADER)

Word
position
in frame

Member name

Member type

Description

7 uintSamplerate

ptypUINT

Audio Data Sample Rate [Hz].

8 uintStatusword

ptypUINT

Status word (bit-coded):
● Bits #31 to #2 - Reserved
● Bit #1 - Squelch status for channel 1

If channel 1 is used
– 1 indicates over squelch threshold
– 0 indicates under squelch threshold

If channel 1 is not used, the value is always 0
● Bit #0 - Squelch status for channel 0.

– 1 indicates over squelch threshold
– 0 indicates under squelch threshold

9 uintCenterFrequency_Low

ptypUINT

64-bit Center Frequency of demodulator [Hz] - least significant
32 bits (uintCenterFrequency_Low) followed by most significant
32 bits (uintCenterFrequency_High)

10 uintCenterFrequency_High

ptypUINT

11 uintDemodBandwidth

ptypUINT

Demodulation Bandwidth [Hz].

12 eDemodulationType

typAUDIODATA_DEMOD

Demodulation Type - demodulation used to produce the audio
data stream. See table below.

13 uintSampleCount

ptypUINT

Audio Data Sample Count per channel

14 uintChannelCount

ptypUINT

Audio Data Channel Count. Not limited. Usually one or two
channels are used.

15 uintSampleSize

ptypUINT

Audio Data Sample Size [bytes]. Because the basic data for-
mat is defined in 32-bit words, the audio datastream samples
can be represented on 1, 2 or 4 bytes.

The demodulation methods (enumeration type: eAUDIODATA_DEMOD) that can be
used when producing the Audio datastream are presented in the following table (in the
future, it is possible that other demodulation methods are added to this list):

Table 3-2: Demodulation methods

Member name Value Description

ekAUDIODATA_DEMOD_FM 0 Frequency demodulation

ekAUDIODATA_DEMOD_AM 1 Amplitude demodulation

Audio DatastreamAMMOS Datastreams

22Reference Document 4094.8964.02 ─ 04

Member name Value Description

ekAUDIODATA_DEMOD_ISB 5 Independent Side Band (ISB) sidebands (chan-
nels). In practice two datastream channels are
generated, channel 1 for LSB and channel 0 for
USB

ekAUDIODATA_DEMOD_CW 6 Continuous Wave

ekAUDIODATA_DEMOD_USB 7 Upper Sideband

ekAUDIODATA_DEMOD_LSB 8 Lower Sideband

ekAUDIODATA_DEMOD_DIGITAL 0x100 Digital demodulation

ekAUDIODATA_DEMOD_UNKNOWN 0xFFFFFFFF Unknown

The Extended Audio Data header structure, of type typAUDIODATAHEADER_EX, is
described in the following table (total Data header length = 11 [32-bit words]).

Table 3-3: Extended Audio Data header (typAUDIODATAHEADER_EX) - extra fields only

Word
position
in frame

Member name

Member type

Description

16

17

bigtimeTimeStamp

ptypBIGTIME

64-bit Timestamp [µs] - Absolute time of the first data sample
in this frame

The values contained in the data header fields represent the status at the beginning of
the frame. A modification happening during the transmission of a frame will only be
noted in the data header of the next frame.

Audio Data Body

The Audio Data body contains the actual Audio Data samples. The samples, PCM
coded signed integers, are sent in packed form (no alignment gaps) as an array of
unsigned integers (uintData are of type ptypUINT). In case of two or more chan-
nels, the datastreams are interleaved, starting with channel 0.

Table 3-4: Audio Data 32-bit sample formats

Word
position
in data
body

Data body - Audio Mono (one channel) Data body - Audio Stereo (two channels)

 Bits #31 to #0 Bits #31 to #0

1 Sample #0 Sample #0, Channel 0

2 Sample #1 Sample #0, Channel 1

3 Sample #2 Sample #1, Channel 0

4 Sample #3 Sample #1, Channel 1

Audio DatastreamAMMOS Datastreams

23Reference Document 4094.8964.02 ─ 04

Table 3-5: Audio Data 16-bit sample formats

Word
position
in data
body

Data body - Audio Mono (one channel) Data body - Audio Stereo (two channels)

 Bits #31 to #16 Bits #15 to #0 Bits #31 to #16 Bits #15 to #0

1 Sample #1 Sample #0 Sample #0, Channel
1

Sample #0, Channel 0

2 Sample #3 Sample #2 Sample #1, Channel
1

Sample #1, Channel 0

Table 3-6: Audio Data 8-bit sample formats

Word
position
in data
body

Data body - Audio Mono (one channel) Data body - Audio Stereo (two channels)

 Bits #31
to #24

Bits #23
to #16

Bits #15
to #8

Bits #7 to
#0

Bits #31 to
#24

Bits #23 to
#16

Bits #15 to
#8

Bits #7 to
#0

1 Sample
#3

Sample
#2

Sample
#1

Sample
#0

Sample
#1 Chan-
nel 1

Sample
#1 Chan-
nel 0

Sample
#0 Chan-
nel 1

Sample #0
Channel 0

2 Sample
#7

Sample
#6

Sample
#5

Sample
#4

Sample
#3 Chan-
nel 1

Sample
#3 Chan-
nel 0

Sample
#2 Chan-
nel 1

Sample #2
Channel 0

The data body size is given by: SampleCount*ChannelCount*SampleSize [bytes]
plus padding bits to a multiple of 32 bits.

Tuner DatastreamsAMMOS Datastreams

24Reference Document 4094.8964.02 ─ 04

4 Tuner Datastreams

4.1 Scan Data Format

The Scan Data format is used for transmissions of scan data containing tuning level
indicator and frequency tuning offset. The Scan Data format is valid for the following
datastream types:

Table 4-1: Scan Datastream types

Datastream type ID Description Sample
parameters

ekFRH_DATASTREAM
__SCAN__LEVEL

Datastream of scan data containing tuning level indicator
information.

nLevel

ekFRH_DATASTREAM
__SCAN__TUNING

Datastream of scan data containing frequency tuning off-
set information.

nTuning

ekFRH_DATASTREAM
__SCAN__LEVEL_TUNING

Datastream of scan data containing tuning level indicator
and frequency tuning offset information.

nLevel

nTuning

For the above datastream types, the same frame structure is used, the only difference
is the payload carried by the datablock body (as described in the table above).

Scan Data Frame Structure

The structure of the Scan Datastream is defined in the
rs_gx40x_scandata_if_defs.h header file.

The Data Frame consists of the global Frame header of type typFRH_FRAMEHEADER,
as described in "Global Frame header" on page 5, followed by the datastream-specific
Frame body.

The corresponding "Frame Type" value from the Frame header for this datastream
type can be found in the global frame types header file:
rs_gx40x_global_frame_types_if_defs.h.

The Frame body consists of: the Data header which describes the datastream payload
and the Data body which contains the actual datastream payload.

Fig. 4-1: Scan Data frame format

Scan Data Format

Tuner DatastreamsAMMOS Datastreams

25Reference Document 4094.8964.02 ─ 04

Limited use of the frame structure definition: typSCANDATA_FRAME__LEVEL,
typSCANDATA_FRAME__TUNING, typSCANDATA_FRAME__LEVEL_TUNING
The structure definition for the entire frame format, defined in the corresponding
header file, is used to illustrate the structure of the data frame and is also suitable for
data generation. Do not use this structure for data parsing because new frame ver-
sions can use extended header types which might lead to wrong addressing in the
frames. Use the Data Header Length information from the global Frame Header to
correctly access the data samples after the Data Header.

Scan Data Header

The Data header describes the datastream payload (such as number of Data samples
contained in this frame), and contains common parameters of the Data samples.

The Scan Data header structure, of type typSCANDATA_HEADER, is described in the
following table (Data header length = 5).

Table 4-2: Scan DATA header (typSCANDATA_HEADER)

Word
position
in frame

Member name

Member type

Description

7 nDatablockCount

ptypUINT

Datablock Count - represents the number of scan data blocks (pay-
load) in this frame. The first two fields determine the granularity of the
interface.

8 nDatablockLength

ptypUINT

Datablock Length - The number 32-bit words in each data block body
(excluding the data block header). The size of the payload is constant
for each frame type.

9

10

nTimeStamp

ptypBIGTIME

Timestamp of this frame in microseconds. Absolute time of the first
data sample, in the first data block in this frame.

11 nReserved2

ptypUINT

Reserved

The values contained in the data header fields represent the status at the beginning of
the frame. A modification happening during the transmission of a frame will only be
noted in the data header of the next frame.

Scan Data Body

The Scan Data body contains the one or more scan results arranged as an array of
nDatablockCount datablocks (the actual stream payload).

There are three datablock types, depending on the carried payload:

● typSCANDATABLOCK__LEVEL
● typSCANDATABLOCK__TUNING
● typSCANDATABLOCK__LEVEL_TUNING

Scan Data Format

Tuner DatastreamsAMMOS Datastreams

26Reference Document 4094.8964.02 ─ 04

Each datablock has a datablock header (common for all datablock types):
scandatablock_header (of type typSCANDATABLOCK_HEADER) and a datablock
body that contains the actual data:

● scandatablock_body__level of type typSCANDATABLOCK_BODY__LEVEL
● scandatablock_body__tuning of type typSCANDATABLOCK_BODY__TUNING
● scandatablock_body__level_tuning of type

typSCANDATABLOCK_BODY__LEVEL_TUNING
Table 4-3: Scan Datablock header (typSCANDATABLOCK_HEADER)

Member name

Member type

Description

nTunerFreqLow

ptypUINT

Least significant 32 bits of the 64-bit representation Tuner Center Frequency [Hz] at
which the following scan result was measured. A scan re-start is indicated by the
special value: kSCANDATA_WRAPAROUND_FLAG__FREQUENCY_LOW

nTunerFreqHigh

ptypUINT

Most significant 32 bits of the 64-bit representation Tuner Center Frequency [Hz] at
which the following scan result was measured. A scan re-start is indicated by the
special value: kSCANDATA_WRAPAROUND_FLAG__FREQUENCY_HIGH

nChannelNumber

ptypUINT

Scan Channel Number at which the following scan result was measured. It repre-
sents the index in the predefined frequency list in case of a Memory Scan, and the
increment (starting with 0) in case of a Frequency Scan (the scanned frequency is
given by: start_frequency +increment*frequency_step). A scan re-start is indicated by
the special value: kSCANDATA_WRAPAROUND_FLAG__CHANNEL

The datablock body is an array of size = uintDatablockLength. The array ele-
ments depend on the datablock type:

Table 4-4: Scan Data sample format

Datablock type Member name

Member type

Description

typSCANDATABLOCK
_BODY__LEVEL

nLevel

ptypINT

Tuning level indicator [0.1 dBµV]. A scan re-start is indicated
by the special value:
kSCANDATA_WRAPAROUND_FLAG__LEVEL

typSCANDATABLOCK
_BODY__TUNING

nTuning

ptypINT

The offset [Hz] from the tuner frequency to the detected maxi-
mum within this spectrum segment. A scan re-start is indicated
by the special value:
kSCANDATA_WRAPAROUND_FLAG__TUNING

typSCANDATABLOCK
_BODY__LEVEL_
TUNING

nLevel

ptypINT

same as above

nTuning

ptypINT

same as above

The special values are defined in rs_gx40x_scandata_if_defs.h

Scan Data Format

Tuner DatastreamsAMMOS Datastreams

27Reference Document 4094.8964.02 ─ 04

4.2 Signal Level Indicator Data Format

The Signal Level Indicator Data format is used for individual Signal Level Indications of
the signal received by the tuner. These indications are periodically generated with a
maximal rate of 10 per second. This data format describes the
ekFRH_DATASTREAM__LEVELDATA datastream type.

Signal Level Indicator Data Frame Structure

The structure of the Signal Level Indicator Datastream is defined in the
rs_gx40x_leveldata_if_defs.h header file.

The Data Frame consists of the global Frame header of type typFRH_FRAMEHEADER,
as described in "Global Frame header" on page 5, followed by the datastream specific
Frame body.

The corresponding "Frame Type" value from the Frame header for this datastream
type can be found in the global frame types header file:
rs_gx40x_global_frame_types_if_defs.h.

The Frame body has a fixed size and contains the Signal Level Indicator data values
directly after the Frame header. A Data header is not used.

Fig. 4-2: Signal Level Indicator Data frame format

Limited use of the frame structure definition: typLEVELDATA_FRAME
The structure definition for the entire frame format, defined in the corresponding
header file, is used to illustrate the structure of the data frame and is also suitable for
data generation. Do not use this structure for data parsing because new frame ver-
sions can use extended header types which might lead to wrong addressing in the
frames. Use the Data Header Length information from the global Frame Header to
correctly access the data samples after the Data Header.

Signal Level Indicator Data Body

The Signal Level Indicator data body of type typLEVELDATA, contains the actual Sig-
nal Level Indicator data values.

Signal Level Indicator Data Format

Tuner DatastreamsAMMOS Datastreams

28Reference Document 4094.8964.02 ─ 04

Table 4-5: Signal Level Indicator Data (typLEVELDATA)

Word
position
in frame

Member name

Member type

Description

7 uintStatusword

ptypUINT

Signal Level indicator Status (bit-coded):
● Bit #31 - Overload flag:

– 0 - no overload
– 1 - Tuner ADC overloaded (input signal too strong)

● Bit #30 - RF_MUTE flag
– 0 - RF_MUTE not active
– 1 - RF_MUTE active (signal disconnected from tuner)

● Bits #29 to #0 - Reserved

8 intTuningLevel

ptypINT

Signal Level [dBµV] - the level of the tuner input signal

9 intRelativeLevelADC

ptypINT

Relative signal level [0.1 dB-full-scale] in relation to the ADC input
range (0 dB represents the full scale, i.e. the input signal covers the
full input range of the ADC).

10 uintCurrentAttenuation

ptypUINT

Current attenuation [dB]

4.3 Tuner PIF Panorama Data Format

The Tuner PIF Panorama Data format is used for polychrome PIF Panorama visualiza-
tion of the tuner spectrum. This data format corresponds to the
ekFRH_DATASTREAM__TUNER_PIFPAN_DATA datastream type (the corresponding
"Frame Type" value can be found in the
rs_gx40x_global_frame_types_if_defs.h).

Tuner PIF Panorama Data frame structure

The Tuner PIF Panorama Data frame consists of the global frame header of type
typFRH_FRAMEHEADER, as described in "Global Frame header" on page 5, followed
by the frame payload (direct from tuner in EB200-Datagram format).

See the tuner documentation for frame payload content (EB200-Datagram format). The
content is supplemented with padding bytes to a multiple of 32-bits.

4.4 Tuner HF (EM010) Data Formats

4.4.1 EM010 Tuning Indicator Data Format

The Tuning Indicator Data format is used for Receiver Tuning Indicator and Status
information. This data format describes the
ekFRH_DATASTREAM__HF_TUNING_INDICATOR_DATA datastream type.

Tuner PIF Panorama Data Format

Tuner DatastreamsAMMOS Datastreams

29Reference Document 4094.8964.02 ─ 04

Tuning Indicator Data Frame Structure

The structure of the Tuning Indicator Datastream is defined in the
rs_gx40x_leveldata_if_defs.h header file.

The Data Frame consists of the global Frame header of type typFRH_FRAMEHEADER,
as described in "Global Frame header" on page 5, followed by the datastream specific
Frame body.

The corresponding "Frame Type" value from the Frame header for this datastream
type can be found in the global frame types header file:
rs_gx40x_em010_hf_if_defs.h.

The Frame body contains one Datablock directly after the Frame header. A Data
header is not used.

Fig. 4-3: Tuning Indicator Data frame format

Limited use of the frame structure definition: typFRAME_EM010_HF_TUN-
ING_INDICATOR_AND_STATUS_DATA
The structure definition for the entire frame format, defined in the corresponding
header file, is used to illustrate the structure of the data frame and is also suitable for
data generation. Do not use this structure for data parsing because new frame ver-
sions can use extended header types which might lead to wrong addressing in the
frames. Use the Data Header Length information from the global Frame Header to
correctly access the data samples after the Data Header.

Tuning Indicator Data Block

The Tuning Indicator data body contains one datablock of type
typEM010_HF_TUNING_INDICATOR_AND_STATUS_DATA_BLOCK.

Tuner HF (EM010) Data Formats

Tuner DatastreamsAMMOS Datastreams

30Reference Document 4094.8964.02 ─ 04

Table 4-6: Tuning Indicator Data (typEM010_HF_TUNING_INDICATOR_AND_STATUS_DATA_BLOCK)

Word
position
in frame

Member name

Member type

Description

7 unReserved

ptypUINT

Reserved

8

9

bigtimeSignalTime

ptypBIGTIME

Timestamp of this Tuning Indicator and Status package in [µs] (see the
"EM010 HF Receiver" manual: TUNING_INDICATOR_DATA – signal-
time)

10 unFrequency

ptypUINT

Frequency [Hz] of tuner (see the "EM010 HF Receiver" manual: TUN-
ING_INDICATOR_DATA – frequency)

11 nSignalLevel

ptypINT

Signal Level at antenna input in [dBµV] - valid for the Tuning Indicator
data in this package (see the "EM010 HF Receiver" manual: TUN-
ING_INDICATOR_DATA – signallevel)

12 bOverloadFlag

ptypBOOL

Condition of the Overload flag - When TRUE the Antenna input is auto-
matically disabled for 1 second. (see the "EM010 HF Receiver" manual:
TUNING_INDICATOR_DATA – overloadflag)

13 bHFmuteFlag

ptypBOOL

Condition of the HF-Mute flag - Mute can be set via the input connector
of the EM010 front panel (see the "EM010 HF Receiver" manual: TUN-
ING_INDICATOR_DATA – hfmuteflag)

14 bSquelchFlag

ptypBOOL

Condition of the Squelch flag (see the "EM010 HF Receiver" manual:
TUNING_INDICATOR_DATA – squelchflag)

15 unReserved_2

ptypUINT

Reserved

16

...

36

unDatablock

ptypUINT

The Tuning Indicator data (FFT) (defined as an array of ptypUINT
elements with size given by the constant
kC_TUNING_INDICATOR_LENGTH = 21 (see the "EM010 HF
Receiver" manual: TUNING_INDICATOR_DATA – datablock)

4.4.2 EM010 Scan Channel Found (SCF) and EM010 Scan Frequency
Found (SFF) Data Formats

The SCF and SFF Scan Data formats describe the
ekFRH_DATASTREAM__HF_SCF_DATA and ekFRH_DATASTREAM__HF_SFF_DATA,
respectively, datastream types.

SCF and SFF Scan Data Frame Structure

The structure of the SCF and SFF Scan Datastreams are defined in the
rs_gx40x_em010_hf_if_defs.h header file.

The Data Frame consists of the global Frame header of type typFRH_FRAMEHEADER,
as described in "Global Frame header" on page 5, followed by the datastream-specific
Frame body.

The corresponding "Frame Type" value from the Frame header for this datastream
type can be found in the global frame types header file:
rs_gx40x_global_frame_types_if_defs.h.

Tuner HF (EM010) Data Formats

Tuner DatastreamsAMMOS Datastreams

31Reference Document 4094.8964.02 ─ 04

The Frame body consists of: the Data header which describes the datastream payload
and the Data body which contains the actual datastream payload.

Fig. 4-4: SCF and SFF Scan Data frame format

Limited use of the frame structure definition: typ-
FRAME_EM010_HF_SCAN_CHANNEL_FOUND, typ-
FRAME_EM010_HF_SCAN_FREQUENCY_FOUND
The structure definition for the entire frame format, defined in the corresponding
header file, is used to illustrate the structure of the data frame and is also suitable for
data generation. Do not use this structure for data parsing because new frame ver-
sions can use extended header types which might lead to wrong addressing in the
frames. Use the Data Header Length information from the global Frame Header to
correctly access the data samples after the Data Header.

SCF and SFF Scan Data header

The Scan Data header contains the number of Data samples contained in this frame.

The Scan Data header structure, of type typEM010_HF_SCAN_DATA_HEADER, is
described in the following table (Data header length = 1).

Table 4-7: SCF and SFF Scan Data header (typEM010_HF_SCAN_DATA_HEADER)

Word
position
in frame

Member name

Member type

Description

7 unNumberOfScanFound

ptypUINT

The Number of scan found packets

The values contained in the data header fields represent the status at the beginning of
the frame. A modification happening during the transmission of a frame will only be
noted in the data header of the next frame.

SCF and SFF Scan Data body

The SCF and SFF Scan Data body contain one or more scan data blocks with scan
results, defined as an structure of type typEM010_HF_SCAN_CHANNEL_FOUND for
channel scan and typEM010_HF_SCAN_FREQUENCY_FOUND for frequency scan. The

Tuner HF (EM010) Data Formats

Tuner DatastreamsAMMOS Datastreams

32Reference Document 4094.8964.02 ─ 04

number of scan results listed in the data body is given in the Data header element:
Number of scan found packets.

Table 4-8: SCF Scan Data body element (typEM010_HF_SCAN_CHANNEL_FOUND)

Word
offset

Member name

Member type

Description

0 unFoundChannel

ptypUINT

Channel (see the "EM010 HF Receiver" manual: CHAN-
NEL_FOUND_DATA – channel)

1 nSignallevel

ptypINT

Signal level in [dBµV] of the found channel (see the "EM010 HF
Receiver" manual: CHANNEL_FOUND_DATA – signallevel)

Table 4-9: SFF Scan Data body element (typEM010_HF_SCAN_FREQUENCY_FOUND)

Word
offset

Member name

Member type

Description

0 unFoundFrequency

ptypUINT

Frequency of detected emission (see the "EM010 HF Receiver" man-
ual: FREQUENCY_FOUND_DATA – frequency)

1 nSignallevel

ptypINT

Signal level in [dBµV] of the found emission (see the "EM010 HF
Receiver" manual: FREQUENCY_FOUND_DATA – signallevel)

4.4.3 EM010 Scan Sweep Restarted (SSR) Data Format

The SSR Status Data format is used for Status Data Indication: Scan Sweep Restarted
of the EM010 receiver. The indication that a new scan is started is used for both Fre-
quency and Channel Scans. This data format describes the
ekFRH_DATASTREAM__HF_SSR_DATA datastream type.

SSR Data Frame Structure

The structure of the SSR Status Datastream is defined in the
rs_gx40x_em010_hf_if_defs.h header file.

The Data Frame consists of the global Frame header of type typFRH_FRAMEHEADER,
as described in "Global Frame header" on page 5, followed by the datastream specific
Frame body.

The corresponding "Frame Type" value from the Frame header for this datastream
type can be found in the global frame types header file:
rs_gx40x_global_frame_types_if_defs.h.

The Frame body consists of only one word indicating that the EM010 has reached the
end of the configured scan and is starting again. A Data header is not used.

Tuner HF (EM010) Data Formats

Tuner DatastreamsAMMOS Datastreams

33Reference Document 4094.8964.02 ─ 04

Fig. 4-5: SSR Data frame format

Limited use of the frame structure definition: typ-
FRAME_EM010_HF_SCAN_RESTARTED
The structure definition for the entire frame format, defined in the corresponding
header file, is used to illustrate the structure of the data frame and is also suitable for
data generation. Do not use this structure for data parsing because new frame ver-
sions can use extended header types which might lead to wrong addressing in the
frames. Use the Data Header Length information from the global Frame Header to
correctly access the data samples after the Data Header.

SSR Data Body

The SSR data body consists of only one word: unScanRestartedCycleCount of
type ptypUINT that gives the number of times the (configured) scan has completed.
For further details see: "EM010 HF Receiver" manual: SWEEP_RESTARTED_DATA.

Tuner HF (EM010) Data Formats

Spectrum DatastreamsAMMOS Datastreams

34Reference Document 4094.8964.02 ─ 04

5 Spectrum Datastreams

5.1 Spectrum Data Format

The Spectrum Data format (32-bit float) describes the
ekFRH_DATASTREAM__SPECDATA_16BIT and
ekFRH_DATASTREAM__SPECDATA_FLOAT datastream types.

Spectrum Data Frame Structure

The structure of the Spectrum Datastream is defined in the
rs_gx40x_specdata_if_defs.h header file.

The Data Frame consists of the global Frame header of type typFRH_FRAMEHEADER,
as described in "Global Frame header" on page 5, followed by the datastream-specific
Frame body.

The corresponding "Frame Type" value from the Frame header for this datastream
type can be found in the global frame types header file:
rs_gx40x_global_frame_types_if_defs.h.

The Frame body consists of: the Data header which describes the datastream payload
and the Data body which contains the actual datastream payload.

Fig. 5-1: Spectrum Data frame format

Limited use of the frame structure definition: typSPECDATA_FLOAT, typSPEC-
DATA_16BIT
The structure definition for the entire frame format, defined in the corresponding
header file, is used to illustrate the structure of the data frame and is also suitable for
data generation. Do not use this structure for data parsing because new frame ver-
sions can use extended header types which might lead to wrong addressing in the
frames. Use the Data Header Length information from the global Frame Header to
correctly access the data samples after the Data Header.

Spectrum Data Header

The Data header describes the datastream payload (such as number of Data samples
contained in this frame), and contains common parameters of the Data samples.

Spectrum Data Format

Spectrum DatastreamsAMMOS Datastreams

35Reference Document 4094.8964.02 ─ 04

The basic Data header contains a number of fields, that are always sent.

The extended Data header contains extra information fields sent after the fields of the
basic structure.

The length of the Data header, as specified by the uintDataHeaderLength parame-
ter from the Frame header, gives information about which Data header type is used,
the basic or the extended one.

The Spectrum Data header structure, of type typSPECDATA_HEADER, is described in
the following table (Data header length = 10).

Table 5-1: Spectrum Data header (typSPECDATA_HEADER)

Word
position
in frame

Member name

Member type

Description

7

8

bigtimeTimeStamp

ptypBIGTIME

Timestamp in microseconds - Absolute time of the first data
sample in this frame

9

10

uintCenterFrequency_Low

uintCenterFrequency_High

ptypUINT

64-bit Center Frequency for spectrum calculation [Hz] - least
significant 32 bits (uintCenterFrequency_Low) followed by most
significant 32 bits (uintCenterFrequency_High)

11 uintSamplerate

ptypUINT

Sample Rate [Hz] of the data from which the spectrum was cal-
culated.

12 uintFFTLength

ptypUINT

FFT length - Number of points (bins) in the Fast Fourier Trans-
form (FFT) window.

13 uintStatusword

ptypUINT

Status word (bit-coded):
● Bits #31 to #18 - Reserved, must be 0
● Bit #17 - Fragment Flag indicating that this is a fragment

of a complete spectrum and the bins between
uintLeftDispInterval and
uintRightDispInterval should be overwritten. All
other bins shall stay unaffected. If the flag is set, the band-
width is equal to the sample rate.

● Bit #16 - Blanking Flag indicating that the spectrum has
been calculated using data that was flagged as blanking

● Bits #15 to #12 - Sample source used for FFT calcula-
tion. The available types are listed in the
eSPECDATA_SAMPLESOURCE enumeration.

● Bit #11 - Reserved
● Bit #10 - dBFs Flag.

– 0 indicates that the level is calculated using the Refer-
enceValue

– 1 indicates that there is no level information available
and dB full scale was used

● Bit #9 - Invalidity Flag indicating that the spectrum has
been calculated using data that was flagged as invalid

● Bit #8 - Level Type Flag indicating the mode with which
the spectral data level was calculated (0 = linear, 1 = loga-
rithmic, as described in the eSPECDATA_LEVELINFO enu-
meration)

● Bits #7 to #4 - Window type of the spectral data. The
available types are listed in the eSPECDATA_WINTYPES
enumeration.

● Bits #3 to #0 - Display mode of the spectral data. The
available types are listed in the
eSPECDATA_DISPLAY_MODES enumeration.

Spectrum Data Format

Spectrum DatastreamsAMMOS Datastreams

36Reference Document 4094.8964.02 ─ 04

Word
position
in frame

Member name

Member type

Description

14 float_spReferenceValue

ptypFLOAT_SP

Level reference value. Given in [µV] or full scale for linear cal-
culation mode and [dBm] or full scale dBFS for logarithmic cal-
culation mode.

15 uintLeftDispInterval

ptypUINT

The index (starting at 0) of the leftmost bin (FFT point) to be
sent (for display): DL

16 uintRightDispInterval

ptypUINT

The index of the rightmost bin (FFT point) to be sent (for dis-
play) DR. Following relation applies: 0≤DL≤DR<FFTLength

The Extended Spectrum Data header structure, of type
typSPECDATA_HEADER_EXTENDED, is described in the following table (total Data
header length = 12 [32-bit words]).

Table 5-2: Extended Spectrum Data header (typSPECDATA_HEADER_EXTENDED) - extra fields only

Word
position
in frame

Member name

Member type

Description

18 intKFactor

ptypINT

kFactor of the current antenna to determine field strength in 0.1dB/m.
The predefined kK_FACTOR_NOT_VALID value is used if no kFactor is
defined

19 uintSampleR-
ate_High

ptypUINT

Sample rate of the data from which the spectrum was calculated -- in
samples/second [Hz] - most significant 32 bits of the 64-bit representa-
tion

The values contained in the data header fields represent the status at the beginning of
the frame. A modification happening during the transmission of a frame will only be
noted in the data header of the next frame.

Spectrum Data Body

The Spectrum Data body contains the actual Spectrum Data samples arranged as an
array of elements. The number and type of elements depends on the Spectrum data-
stream type as described in the following table:

Table 5-3: Spectrum Data sample format

Datastream type Data sample
type

Data body array structure

ekFRH_DATASTREAM
__SPECDATA_FLOAT

ptyp
FLOAT_SP

Data body contains (uintRightDispInterval -
uintLeftDispInterval+1) floating point elements

ekFRH_DATASTREAM
__SPECDATA_16BIT

ptypUINT Data body contains ceil((uintRightDispInterval -
uintLeftDispInterval+1)/2) value-pair elements. Each
value-pair contains two 16-bit signed fractional values. Values
with even indices are placed in the most significant 16 bits. Val-
ues with odd indices are placed in the least significant 16 bits. If
the number of values is odd, the last value (stuffing value) is set
to zero

Spectrum Data Format

Spectrum DatastreamsAMMOS Datastreams

37Reference Document 4094.8964.02 ─ 04

5.2 Segmentation Spectrum Data Format

The Segmentation Spectrum Data format (32-bit float) describes the
ekFRH_DATASTREAM__SEGMENTATION_SPECDATA_FLOAT datastream type.

Segmentation Spectrum Data Frame Structure

The structure of the Segmentation Spectrum Datastream is defined in the
rs_gx40x_segmentation_specdata_if_defs.h header file.

The Data Frame consists of the global Frame header of type typFRH_FRAMEHEADER,
as described in "Global Frame header" on page 5, followed by the datastream-specific
Frame body.

The corresponding "Frame Type" value from the Frame header for this datastream
type can be found in the global frame types header file:
rs_gx40x_global_frame_types_if_defs.h.

The Frame body consists of: the Data header which describes the datastream payload
and the Data body which contains the actual datastream payload.

Fig. 5-2: Segmentation Spectrum Data frame format

Limited use of the frame structure definition: typSEGMENTATION_SPEC-
DATA_FLOAT
The structure definition for the entire frame format, defined in the corresponding
header file, is used to illustrate the structure of the data frame and is also suitable for
data generation. Do not use this structure for data parsing because new frame ver-
sions can use extended header types which might lead to wrong addressing in the
frames. Use the Data Header Length information from the global Frame Header to
correctly access the data samples after the Data Header.

Segmentation Spectrum Data Header

The Data header describes the datastream payload (such as number of Data samples
contained in this frame), and contains common properties of the Data samples.

The Segmentation Spectrum Data header structure, of type
typSEGMENTATION_SPECDATA_HEADER, is described in the following table (total
Data header length = 12 [32-bit words]).

Segmentation Spectrum Data Format

Spectrum DatastreamsAMMOS Datastreams

38Reference Document 4094.8964.02 ─ 04

Table 5-4: Segmentation Spectrum Data header structure (typSEGMENTATION_SPEC-
DATA_HEADER)

Word
position
in frame

Member name

Member type

Description

7

to

16

specdataheaderHeader

typSPECDATA_HEADER

Spectrum data specific header as described at table 5-1

17 uintNumberOfSegments

ptypUINT

The number of segments found

18 uintIndexOfCenterSegment

ptypUINT

The index number (starting with 0) of the center segment

The values contained in the data header fields represent the status at the beginning of
the frame. A modification happening during the transmission of a frame will only be
noted in the data header of the next frame.

Segmentation Spectrum Data Body

The Segmentation Spectrum Data body consists of two Data blocks. The first Data
block contains the actual Spectrum Data samples structured as an array of floating
point elements. The second Data block contains the boundaries of the found segments
(array of segments defined as a structure of type: typSEGMENT_BOUNDARY).

Table 5-5: Segmentation Spectrum Data Body format

Member name

Member type

Description

float_spFFTBin

ptyp FLOAT_SP

Samples Data block - array containing (uintRightDispIn-
terval-uintLeftDispInterval+1) floating point values

segmentboundaryBoundaries

typSEGMENT_BOUNDARY

Segments Data block - array containing
uintNumberOfSegments elements of type typSEG-
MENT_BOUNDARY defining the boundaries of the found
segments (left/right FFT-Bin and corresponding left/right
absolute frequencies)

 uintLeftSegmentFFTBin

ptypUINT

Left FFT bin - the number (starting at 0) of the leftmost bin
(FFT point) of this segment

uintRightSegmentFFTBin

ptypUINT

Right FFT bin - the number of the rightmost bin (FFT
point) of this segment

uintLeftSegmentFrequency_Low

uintLeftSegmentFrequency_High

ptypUINT

Left boundary frequency - of the segment in [Hz] - 64-bit
representation: least significant 32 bits (uintLeftSegment-
Frequency_Low) followed by most significant 32 bits (uin-
tLeftSegmentFrequency_High)

uintRightSegmentFrequency_Low

uintRightSegmentFrequency_High

ptypUINT

Right boundary frequency - of the segment in [Hz] - 64-
bit representation: least significant 32 bits (uintRightSeg-
mentFrequency_Low) followed by most significant 32 bits
(uintRightSegmentFrequency_High)

Segmentation Spectrum Data Format

Symbol DatastreamsAMMOS Datastreams

39Reference Document 4094.8964.02 ─ 04

6 Symbol Datastreams
The Symbol Data format is used for demodulation result data (symbol stream) trans-
missions. It describes the ekFRH_DATASTREAM__SYMBOLDATA datastream type.

Symbol Data Frame Structure

The structure of the Symbol Datastream is defined in the
rs_gx40x_symboldata_if_defs.h header file.

The Data Frame consists of the global Frame header of type typFRH_FRAMEHEADER,
as described in "Global Frame header" on page 5, followed by the datastream-specific
Frame body.

The corresponding "Frame Type" value from the Frame header for this datastream
type can be found in the global frame types header file:
rs_gx40x_global_frame_types_if_defs.h.

The Frame body consists of: the Data header which describes the datastream payload
and the Data body which contains the actual datastream payload.

Fig. 6-1: Symbol Data frame format

Limited use of the frame structure definition: typSYMBOLDATAFRAME
The structure definition for the entire frame format, defined in the corresponding
header file, is used to illustrate the structure of the data frame and is also suitable for
data generation. Do not use this structure for data parsing because new frame ver-
sions can use extended header types which might lead to wrong addressing in the
frames. Use the Data Header Length information from the global Frame Header to
correctly access the data samples after the Data Header.

Symbol Data Header

The Data header describes the datastream payload (such as number of Data samples
contained in this frame), and contains common parameters of the Data samples.

The Symbol Data header structure, of type typSYMBOLDATAHEADER, is described in
the following table (Data header length = 12).

Symbol DatastreamsAMMOS Datastreams

40Reference Document 4094.8964.02 ─ 04

Table 6-1: Symbol Data header (typSYMBOLDATAHEADER)

Word
position
in frame

Member name

Member type

Description

7

8

bigtimeTimeStamp

ptypBIGTIME

64-bit Timestamp [µs] - Absolute time of the first sample of the
data in the frame from which the symbols were calculated.

9

10

uintCenterFrequency_Low

uintCenterFrequency_High

ptypUINT

64-bit Center Frequency of demodulator [Hz] - least significant
32 bits (uintCenterFrequency_Low) followed by most significant
32 bits (uintCenterFrequency_High)

11 float_spFrequencyDevia-
tion

ptypFLOAT_SP

Frequency deviation Deviation from tuner center frequency
due to automatic frequency control unit [Hz].

12

13

packedcharModulationType

ptypPACKEDCHAR

Modulation type: Token defining the modulation type (defined
as a string of ptypPACKEDCHAR characters with size = 2, as
defined by the kSYMBOLDATA_MODTYPE_STRING_LEN con-
stant). The modulation type is described through 8 ASCII (ANSI
X3.4) characters (empty fields are filled with \0). Note: modula-
tion types with 8 characters have no terminating \0.

14 uintStatusword

ptypUINT

Status word (bit-coded):
● Bits #31 to #4 - Reserved (must be set to 0)
● Bit #3 - indicates Morse data (bits #2 to #0 have to be set

to 0). In case of morse data, another format of the symbol
data and Soft-decision value will be used.
If channel 1 is not used, the value is always 0

● Bit #2… #0 - Soft decision type. Defines the type of the
Soft-decision value from the Symbol data.
– 0 indicates a 1x16-bit fractional signed real value in

the interval [-1.0 to 1.0]
– 1 indicates a 2x8-bit fractional signed complex value

in the interval [-1.0 to 1.0]. These two numbers repre-
sent a complex number with a real and an imaginary
part (the imaginary part represents the most signifi-
cant 8 bits and the real part the least significant 8 bits)

15 uintChannelCount

ptypUINT

Number of channels (larger than one only in multi-channel
mode)

16 float_spSymbolRate

ptypFLOAT_SP

Symbol rate in symbols / second. This value is derived as an
average for all the symbols in this symbol-data frame. Values
between 1 and 4800 are permitted.

17 uintSymbolValency

ptypUINT

Symbol valency: number of possible different symbol values
for the given modulation type (i.e. maximum numeric value a
symbol may have). For all symbol values we have: 0≤symbol
value≤Symbol valency≤128.

18 uintSymbolCount

ptypUINT

Symbol count: number of symbols in this frame (to follow this
header)

The values contained in the data header fields represent the status at the beginning of
the frame. A modification happening during the transmission of a frame will only be
noted in the data header of the next frame.

Symbol DatastreamsAMMOS Datastreams

41Reference Document 4094.8964.02 ─ 04

Symbol Data Body

The Symbol Data body contains the actual Symbol Data samples. The samples are
sent as an array of unsigned integers (of type ptypUINT). The data body size is given
by: Symbol count [32-bit words].

Each 32-bit data sample has the following structure:

● Bits #31 to #16 - Soft decision value (the format of the value is given by the Soft
decision type from the Status word in the Data header. This value depends
on the modulation type. In case of Morse data, this value represents the duration of
the tone / pause in 100µs steps.

● Bits #15 to #13 - Reserved (have to be set to 0)
● Bit #12 - Burst start flag denotes the first symbol in a demodulated signal burst.

For multi channel mode, for each channel the first symbol in a demodulated signal
burst carries this flag.

● Bits #11 to #8 - Symbol quality (confidence value) expressed as an unsigned
integer (depends on the modulation type). Higher values indicate higher quality
(confidence)

● Bit #7 - Channel 0 flag: the value 1 indicates that this symbol belongs to channel
0. For multi channel mode, the datastreams are interleaved, starting with channel 0
in increasing order of the center frequency. Thus, the symbol following a channel-0
symbol belongs to channel-1 and so on. In case of single channel mode, this flag is
always set to 1.

● Bits #6 to #0 - The actual symbol value (for some modulation types there is a
specific symbol to bit pattern mapping). The symbol value is represented on 7 bits.
Depending on the method, only a certain number of those bits are valid as speci-
fied by the Symbol valency (for example, with FSK-2 only one, the least significant
bit is used).

Table 6-2: Mapping symbol value to Morse data

Morse data Binary value Hex value Constant defined in header file

DOT tone 00000000 0x0 kSYMBOLDATA_MORSE__DOT

DASH tone 00000001 0x1 kSYMBOLDATA_MORSE__DASH

inter-tone gap 00000010 0x2 kSYMBOLDATA_MORSE__SHORT_PAUSE

inter-character gap 00000011 0x3 kSYMBOLDATA_MORSE__MEDIUM_PAUSE

inter-word gap 00000100 0x4 kSYMBOLDATA_MORSE__LONG_PAUSE

new line 00000101 0x5 kSYMBOLDATA_MORSE__NEW_LINE

Error messages

tone too short 10000000 0x40 kSYMBOLDATA_MORSE__DOT_TOO_SHORT

tone too long 10000001 0x41 kSYMBOLDATA_MORSE__DASH_TOO_LONG

gap too short 10000010 0x42 kSYMBOLDATA_MORSE__PAUSE_TOO_SHORT

Time Domain DatastreamsAMMOS Datastreams

42Reference Document 4094.8964.02 ─ 04

7 Time Domain Datastreams

7.1 Time Domain Data Format

The Time Domain Data format describes the
ekFRH_DATASTREAM__TIMEDOMAIN_DATA datastream type.

Time Domain Data Frame Structure

The structure of the Time Domain Datastream is defined in the
rs_gx40x_timedomain_if_defs.h header file.

The Data Frame consists of the global Frame header of type typFRH_FRAMEHEADER,
as described in "Global Frame header" on page 5, followed by the datastream-specific
Frame body.

The corresponding "Frame Type" value from the Frame header for this datastream
type can be found in the global frame types header file:
rs_gx40x_global_frame_types_if_defs.h.

The Frame body consists of: the Data header which describes the datastream payload
and the Data body which contains the actual datastream payload.

Fig. 7-1: Time Domain Data frame format

Limited use of the frame structure definition: typTIMEDOMAINDATAFRAME
The structure definition for the entire frame format, defined in the corresponding
header file, is used to illustrate the structure of the data frame and is also suitable for
data generation. Do not use this structure for data parsing because new frame ver-
sions can use extended header types which might lead to wrong addressing in the
frames. Use the Data Header Length information from the global Frame Header to
correctly access the data samples after the Data Header.

Time Domain Data Header

The Data header describes the datastream payload (such as number of Data samples
contained in this frame), and contains common parameters of the Data samples.

The Time Domain Data header structure, of type typTIMEDOMAINDATAHEADER, is
described in the following table (Data header length = 7).

Time Domain Data Format

Time Domain DatastreamsAMMOS Datastreams

43Reference Document 4094.8964.02 ─ 04

Table 7-1: Time Domain Data header (typTIMEDOMAINDATAHEADER)

Word
position
in frame

Member name

Member type

Description

7

8

bigtimeTimeStamp

ptypBIGTIME

64-bit Timestamp [µs] - Absolute time of the first sample of the
data in the frame from which the time domain data was calcula-
ted.

9 uintTunerFrequency_Low

ptypUINT

64-bit Tuner Frequency of demodulator [Hz] - least significant
32 bits (uintTunerFrequency_Low) followed by most significant
32 bits (uintTunerFrequency_High)

10 uintTunerFrequency_High

ptypUINT

11 uintStatusword

ptypUINT

Status word (bit-coded):
● Bits #31 to #0 - Reserved (must be set to 0)

12 float_spSampleRate

ptypFLOAT_SP

Sample rate

13 uintSampleCount

ptypUINT

Sample count: number of symbols to follow this header

The values contained in the data header fields represent the status at the beginning of
the frame. A modification happening during the transmission of a frame will only be
noted in the data header of the next frame.

Time Domain Data Body

The Time Domain Data body contains the actual Time Domain Data samples. The
samples are sent as an array of type ptypFLOAT_SP. The data body size is given by:
Sample count [32-bit words].

7.2 Instantaneous Data Format

The Instantaneous Data format describes the
ekFRH_DATASTREAM__INSTANTANEOUSDATA datastream type.

Instantaneous Data Frame Structure

The structure of the Instantaneous Data stream is defined in the
rs_gx40x_instantaneousdata_if_defs.h header file.

The Data Frame consists of the global Frame header of type typFRH_FRAMEHEADER,
as described in "Global Frame header" on page 5, followed by the datastream-specific
Frame body.

The corresponding "Frame Type" value from the Frame header for this datastream
type can be found in the global frame types header file:
rs_gx40x_global_frame_types_if_defs.h.

Instantaneous Data Format

Time Domain DatastreamsAMMOS Datastreams

44Reference Document 4094.8964.02 ─ 04

The Frame body consists of: the Data header which describes the datastream payload
and the Data body which contains the actual datastream payload.

Fig. 7-2: Instantaneous Data frame format

Limited use of the frame structure definition: typINSTANTANEOUSDATAFRAME
The structure definition for the entire frame format, defined in the corresponding
header file, is used to illustrate the structure of the data frame and is also suitable for
data generation. Do not use this structure for data parsing because new frame ver-
sions can use extended header types which might lead to wrong addressing in the
frames. Use the Data Header Length information from the global Frame Header to
correctly access the data samples after the Data Header.

Instantaneous Data Header

The Data header describes the datastream payload (such as number of Data samples
contained in this frame), and contains common parameters of the Data samples.

The Instantaneous Data header structure, of type typINSTANTANEOUSDATAHEADER,
is described in the following table (Data header length = 8).

Table 7-2: Instantaneous Data header (typINSTANTANEOUSDATAHEADER)

Word
position
in frame

Member name

Member type

Description

7

8

bigtimeTimeStamp

ptypBIGTIME

64-bit Timestamp [µs] - Absolute time of the first sample of the
data in the frame from which the instantaneous data was calcu-
lated.

9 uintTunerFrequency_Low

ptypUINT

64-bit Tuner Frequency of demodulator [Hz] - least significant
32 bits (uintTunerFrequency_Low) followed by most significant
32 bits (uintTunerFrequency_High)

10 uintTunerFrequency_High

ptypUINT

11 uintStatusword

ptypUINT

Status word (bit-coded):
● Bits #31 to #1 - Reserved (must be set to 0)
● Bit #0 - Modulation type:

– 0 - frequency modulated (such as MSK, FSK2, FSK4,
Multitone)

– 1 - amplitude modulated (such as ASK2)

12 float_spSampleRate

ptypFLOAT_SP

Sample rate of data in data body [Hz]

Instantaneous Data Format

Time Domain DatastreamsAMMOS Datastreams

45Reference Document 4094.8964.02 ─ 04

Word
position
in frame

Member name

Member type

Description

13 float_spSamplesPerSymbol

ptypFLOAT_SP

Samples per symbol - number of samples per demodulated
symbol. Depends on the used oversampling in the demodula-
tor. Is usually in the range 6 to 20 samples per symbol.

14 uintSampleCount

ptypUINT

Sample count: number of samples to follow this header

The values contained in the data header fields represent the status at the beginning of
the frame. A modification happening during the transmission of a frame will only be
noted in the data header of the next frame.

Instantaneous Data Body

The Instantaneous Data body contains the actual Instantaneous Data samples. The
samples are sent as an array of type ptypFLOAT_SP. The data body size is given by:
Sample count [32-bit words]. In case of frequency modulated signals, the samples
represent the instantaneous frequency in Hz and in case of amplitude modulated sig-
nals, the samples represent the measured antenna voltage in µV.

Instantaneous Data Format

Decoder DatastreamsAMMOS Datastreams

46Reference Document 4094.8964.02 ─ 04

8 Decoder Datastreams

8.1 Image Data Format

The Image Data format is used for demodulation result image data. It describes the
ekFRH_DATASTREAM__IMAGEDATA datastream type.

Image Data Frame Structure

The structure of the Image Datastream is defined in the
rs_gx40x_imagedata_if_defs.h header file.

The Data Frame consists of the global Frame header of type typFRH_FRAMEHEADER,
as described in "Global Frame header" on page 5, followed by the datastream-specific
Frame body.

The corresponding "Frame Type" value from the Frame header for this datastream
type can be found in the global frame types header file:
rs_gx40x_global_frame_types_if_defs.h.

The Frame body consists of: the Data header which describes the datastream payload
and the Data body which contains the actual datastream payload.

The image is split into lines, containing the same number of pixels per line, with pixels
of same size (bit representation). Each frame can contain one or several lines of the
picture with the last line in the image being specially marked in the frame header. Thus
the total number of lines in the image can be deduced only after the last line is trans-
mitted.

Fig. 8-1: Image Data frame format

Limited use of the frame structure definition: typIMAGEDATAFRAME
The structure definition for the entire frame format, defined in the corresponding
header file, is used to illustrate the structure of the data frame and is also suitable for
data generation. Do not use this structure for data parsing because new frame ver-
sions can use extended header types which might lead to wrong addressing in the
frames. Use the Data Header Length information from the global Frame Header to
correctly access the data samples after the Data Header.

Image Data Format

Decoder DatastreamsAMMOS Datastreams

47Reference Document 4094.8964.02 ─ 04

Image Data Header

The basic Data header contains a number of fields, that are always sent.

The extended Data header contains extra information fields sent after the fields of the
basic structure.

The length of the Data header, as specified by the uintDataHeaderLength parame-
ter from the Frame header, gives information about which Data header type is used,
the basic or the extended one.

The Data header describes the datastream payload (such as number of Data samples
contained in this frame), and contains common parameters of the Data samples.

The Image Data header structure, of type typIMAGEDATAHEADER, is described in the
following table (Data header length = 3).

Table 8-1: Image Data header (typIMAGEDATAHEADER)

Word
position
in frame

Member name

Member type

Description

7 uintStatusword

ptypUINT

Status word (bit-coded):
● Bits #31 to #5 - Reserved (have to be set to 0)
● Bit #4 - Data type

– 0 indicates data type = image
– 1 indicates data type = text

● Bits #3 to #2 - Pixel representation:
– 0 indicates 1-bit pixel representation (pixels as binary values:

0 or 1). One 32-bit word carries the information of 32 pixels.
– 1 indicates 8-bit pixel representation (luminance information,

256 grayscale values, the lighter the tone, the higher the
numeric value). One 32-bit word carries the information of 4
pixels.

– 2 indicates 24-bit pixel representation (color information in
RGB format, each color being represented on 8 bits, 256 val-
ues, the lighter the tone, the higher the numeric value). One
32-bit word carries the information of one pixel:
bits #31 to #24 – not used, set to 0
bits #23 to #16 – RED level
bits #15 to #08 – GREEN level
bits #07 to #00 – BLUE level

● Bit #1 - Last line indicator - if this flag is set to 1 than this frame
contains the last line of the current image

● Bit #0 - Image direction - set to 0 when the image is sent from top
line to bottom line and 1 otherwise

8 uintPixelsPerLine

ptypUINT

Number of Pixels per line for the current image. In case of text data
this gives the number of ASCII characters.

9 uintNoOfLines

ptypUINT

Number of lines (image lines) sent in this frame. In case of text data,
this has to be set to 1.

The Extended Image Data header structure, of type typIMAGEDATAHEADER_EX, is
described in the following table (Data header length = 5).

Image Data Format

Decoder DatastreamsAMMOS Datastreams

48Reference Document 4094.8964.02 ─ 04

Table 8-2: Extended Image Data header (typIMAGEDATAHEADER_EX) - extra fields only

Word
position
in frame

Member name

Member type

Description

10

11

bigtimeTimeStamp

ptypBIGTIME

64-bit Timestamp [µs] - Absolute time of the first data sample in this
frame.

The values contained in the data header fields represent the status at the beginning of
the frame. A modification happening during the transmission of a frame will only be
noted in the data header of the next frame.

Image Data Body

The Image Data body contains the actual Image Data samples, i.e. the pixel informa-
tion. Each image is defined as a set of lines with each line having a certain number of
pixels. One frame can contain the pixel information of one or more lines, as specified
by the Number of lines parameter in the Data header.

The total number of pixels sent in the current frame is given by: Number of lines *
Number of Pixels per line. If the size of the data type, specified in the Status word, is
smaller then ptypUINT, multiple pixels or ASCII characters get packed into a ptypUINT
word. Therefore the size of a line depends on the number of pixels and the size of the
pixel representation.

The following LineSize variable defines the size of a line in [32-bit words] for different
pixel representation types:

● 1-bit pixel representation => LineSize=ceil(uintPixelsPerLine/32) [32-bit words]
● 8-bit pixel representation => LineSize=ceil(uintPixelsPerLine/4) [32-bit words]
● 32-bit pixel representation => LineSize=uintPixelsPerLine [32-bit words]
● ASCII Character => LineSize=ceil(uintPixelsPerLine/4) [32-bit words]

Unused bits in the last 32-bit word of EACH line are set to zero!

The entire data body size is given by: LineSize*Number of lines [32-bit words] .

The following table presents an example of a Data body structure that contains five
lines of an image having 10 pixels per line and using the 8-bit pixel representation. For
each line a number of ceil(10/4) = 3 [32-bit words] are needed to represent a line
of the image. The data body containing five lines has a total of 5*3=15 32-bit words.

 32-bit word 32-bit word 32-bit word

byte 1 2 3 4 1 2 3 4 1 2 3 4

line1 pixel 1 pixel 2 pixel 3 pixel 4 pixel 5 pixel 6 pixel 7 pixel 8 pixel 9 pixel 10 0 0

line2 pixel 1 pixel 2 pixel 3 pixel 4 pixel 5 pixel 6 pixel 7 pixel 8 pixel 9 pixel 10 0 0

line3 pixel 1 pixel 2 pixel 3 pixel 4 pixel 5 pixel 6 pixel 7 pixel 8 pixel 9 pixel 10 0 0

Image Data Format

Decoder DatastreamsAMMOS Datastreams

49Reference Document 4094.8964.02 ─ 04

 32-bit word 32-bit word 32-bit word

byte 1 2 3 4 1 2 3 4 1 2 3 4

line4 pixel 1 pixel 2 pixel 3 pixel 4 pixel 5 pixel 6 pixel 7 pixel 8 pixel 9 pixel 10 0 0

line5 pixel 1 pixel 2 pixel 3 pixel 4 pixel 5 pixel 6 pixel 7 pixel 8 pixel 9 pixel 10 0 0

8.2 Decoded Text Data Format

The Decoded Text Data format is used for decoder result text data (Bitstream Process-
ing Channel Decoding). It describes the
ekFRH_DATASTREAM__DECODER_TEXT_DATA datastream type.

Decoded Text Data Frame Structure

The structure of the Decoded Text Datastream is defined in the
rs_gx40x_decoder_if_defs.h header file.

The Data Frame consists of the global Frame header of type typFRH_FRAMEHEADER,
as described in "Global Frame header" on page 5, followed by the datastream-specific
Frame body.

The corresponding "Frame Type" value from the Frame header for this datastream
type can be found in the global frame types header file:
rs_gx40x_global_frame_types_if_defs.h.

The Frame body consists of: the Data header which describes the datastream payload
and the Data body which contains the actual datastream payload.

Fig. 8-2: Decoded Text Data frame format

Limited use of the frame structure definition: typDECODER__DECO-
DED_TXT_FRAME
The structure definition for the entire frame format, defined in the corresponding
header file, is used to illustrate the structure of the data frame and is also suitable for
data generation. Do not use this structure for data parsing because new frame ver-
sions can use extended header types which might lead to wrong addressing in the
frames. Use the Data Header Length information from the global Frame Header to
correctly access the data samples after the Data Header.

Decoded Text Data Format

Decoder DatastreamsAMMOS Datastreams

50Reference Document 4094.8964.02 ─ 04

Decoded Text Data Header

The Data header describes the datastream payload (such as number of Data samples
contained in this frame), and contains common parameters of the Data samples.

The Decoded Text Data header structure, of type
typDECODER__DECODED_TXT_HEADER, is described in the following table (Data
header length = 4).

Table 8-3: Decoded Text Data header (typDECODER__DECODED_TXT_HEADER)

Word
position
in frame

Member name

Member type

Description

7

8

bigtimeTimeStamp

ptypBIGTIME

64-bit Timestamp [µs] - Absolute time of the first data sample in this
frame from which the results were calculated.

8 unModuleID

ptypUINT

Module ID - The system wide unique identifier of the decoder.

9 unCharElement-
Count

ptypUINT

Number of characters - The number of decoded characters (ele-
ments) in this frame.

The values contained in the data header fields represent the status at the beginning of
the frame. A modification happening during the transmission of a frame will only be
noted in the data header of the next frame.

Decoded Text Data Body

The Decoded Text Data body contains the decoded text payload which is defined as
an array with unCharElementCount elements of type
typDECODER__DECODED_CHARELEMENT.

Table 8-4: Decoded Text data sample format (typDECODER__DECODED_CHARELEMENT)

Member name

Member type

Description

unSubChannelID

ptypUINT

Sub-Channel ID - The ID of the sub-channel to which this decoded character
belongs. Sub-Channel Identifiers are used to implement a logical separation of
decoded text into channels. Some methods (e.g. Packet Radio) multiplex data into
sub-channels. These sub-channels are detected by the decoder, and the decoded
data packaged accordingly into sub-channels in the decoded data output stream.
Some methods (e.g. PICCOLO) do not provide redundancy that allows for unam-
biguous interpretation during decoding. When the decoder detects ambiguity, it
opens a sub-channel in the decoded data output stream, containing the characters
from the alternative symbol interpretation. Similarly, sub-channels are closed when
the unambiguity no longer exists

decoded_charDeco-
dedChar

typDECODED_CHAR

Decoded character. The typDECODED_CHAR type is defined as a 32-bit unsigned
integer.

Decoded Text Data Format

Decoder DatastreamsAMMOS Datastreams

51Reference Document 4094.8964.02 ─ 04

8.3 Transmission System Result (TSR) Data Formats

The TSR Data format is used for datastreams containing the results of the digital
demodulation and decoder system for different transmission methods. It describes the
ekFRH_DATASTREAM__TRANSMISSION_SYSTEM_RESULT_DATA datastream type.

TSR Data Frame Structure

The structure of the Transmission System Result Datastream is defined in the
rs_gx40x_transmission_system_result_if_defs.h header file.

The Data Frame consists of the global Frame header of type typFRH_FRAMEHEADER,
as described in "Global Frame header" on page 5, followed by the datastream-specific
Frame body.

The corresponding "Frame Type" value from the Frame header for this datastream
type can be found in the global frame types header file:
rs_gx40x_global_frame_types_if_defs.h.

The Frame body consists of: the Data header which describes the datastream payload
and the Data body which contains the actual datastream payload.

Fig. 8-3: TSR Data frame format

Limited use of the frame structure definition: typTRANSMISSION_SYS-
TEM_RESULT_FRAME
The structure definition for the entire frame format, defined in the corresponding
header file, is used to illustrate the structure of the data frame and is also suitable for
data generation. Do not use this structure for data parsing because new frame ver-
sions can use extended header types which might lead to wrong addressing in the
frames. Use the Data Header Length information from the global Frame Header to
correctly access the data samples after the Data Header.

TSR Data Header

The Data header identifies the transmission method and the corresponding format of
the data samples.

The TSR Data header structure, of type typTRANSMISSIONSYSTEMDATAHEADER, is
described in the following table (Data header length = 7).

Transmission System Result (TSR) Data Formats

Decoder DatastreamsAMMOS Datastreams

52Reference Document 4094.8964.02 ─ 04

Table 8-5: TSR Data header (typTRANSMISSIONSYSTEMDATAHEADER)

Word
position
in frame

Member name

Member type

Description

7

8

bigtimeTimeStamp

ptypBIGTIME

64-bit Timestamp [µs] - Absolute time of the first data sample in this
frame from which the results were calculated.

9

to

12

packedcharTrans
missionSystem

ptypPACKEDCHAR

Transmission System Name - defined as an array of
kTRANSMISSION_SYSTEM_STRING_LEN=4 elements of type ptyp-
PACKEDCHAR. Contains up to 16 ASCII (ANSI X3.4) characters that
define the Transmission system name of the result data in the frame.
Empty fields are filled with 0. Note: A name of exactly 16 characters
has no terminating \0.

13 uintStatusword

ptypUINT

Status word (bit-coded):
● Bits #31 to #8 - Reserved (must be set to 0)
● Bits #7 to #0 - Result ID - this field identifies the format of the

result data (typTRANSMISSIONSYSTEMRESULTDATA) contained
in this frame. For each transmission system type (xxx) the corre-
sponding result ID is defined in the header file as constant of the
form: kTRANSMISSION_SYSTEM_ID_xxx. The corresponding for-
mat of the result data is defined as a structure:
typTRANSMISSIONRESULT_xxx. The supported transmission
system types are listed in the table below. Each result data format
will be described in detail in the next section.

The values contained in the data header fields represent the status at the beginning of
the frame. A modification happening during the transmission of a frame will only be
noted in the data header of the next frame.

Fig. 8-4: Structures used for the TSR datastreams

Result
ID
value

Transmission
method

Transmission method description Result data format

0 ASCII ASCII (American Standard Code for Information
Interchange) - 8-bit characters

"Result data format:
ASCII" on page 54

1 UNICODE UNICODE - 16-bit characters "Result data format:
UNICODE"
on page 54

2 ATIS ATIS (Automatic Transmission Identification System)
- Maritime identification information

"Result data format:
ATIS" on page 54

Transmission System Result (TSR) Data Formats

Decoder DatastreamsAMMOS Datastreams

53Reference Document 4094.8964.02 ─ 04

Result
ID
value

Transmission
method

Transmission method description Result data format

3 FMS_BOS FMS-BOS - German abbreviation for FunkMeldeSys-
tem für Behörden und Organisationen mit Sicherheit-
sanforderungen (radio communications system for
authorities and organizations with security concerns
(police, fire brigade, customs, ambulances)

"Result data format:
FMS-BOS"
on page 54

4 ZVEI ZVEI - system of the German institution ZentralVer-
band Elektrotechnik und ElektronikIndustrie e.V.
(Central Association of Electrical and Electronic
Industries)

"Result data format:
ZVEI" on page 56

5 ZVEI_VDEW ZVEI-VDEW - system of the German institution Ver-
einigung Deutscher ElektrizitätsWerke e.V. (Union of
German Power Companies)

"Result data format:
ZVEI-VDEW"
on page 57

6 POCSAG POCSAG - system of the Post Office Code Stand-
ardization Advisory Group (pager system described
in CCIR Recommendation 584, Radiopaging Code
1)

"Result data format:
POCSAG"
on page 58

7 PACKET_RADIO Packet Radio - Packet switching technology on radio
link instead of fixed connection line between stations

"Result data format:
PACKET_RADIO"
on page 59

8 MPT1327 MPT1327 - system of the Ministry of Postal service
and Telecommunications (UK) - trunked radio net-
work standard

"Result data format:
MPT1327"
on page 62

9 ACARS ACARS - Aircraft Communications Addressing and
Reporting System (Aircraft communication)

"Result data format:
ACARS"
on page 63

10 PACTOR PACTOR_II and PACTOR_III - PACket Teleprinting
Over Radio

"Result data format:
PACTOR II and III"
on page 64

11 CLOVER CLOVER2 and CLOVER2000 - adaptive modulation
system

"Result data format:
CLOVER"
on page 66

12 F7W F7W - F: frequency modulation, 7: multichannel digi-
tal signal, W: mixed information, according to ITU
recommendation ‒ Frequency-Shift-Keying, 2 inde-
pendent channels

"Result data format:
F7W" on page 67

13 MORSE Morse - Telegraphy system "Result data format:
F7W" on page 67

16 PDU Generic format according to PDU concept "Result data format:
PDU" on page 69

TSR Data Body

The Data body structure is given by the Result ID value contained in the Status Word
of the Data header. Each TRS result type is assigned a Result ID for which a specific
TRS data format is defined (for example typTRANSMISSIONRESULT_ASCII).

Transmission System Result (TSR) Data Formats

Decoder DatastreamsAMMOS Datastreams

54Reference Document 4094.8964.02 ─ 04

Result data format: ASCII

Table 8-6: Data body format for ASCII result datastream (typTRANSMISSIONRESULT_ASCII)

Word
position
in Data
body

Member name

Member type

Description

1 uintDataCount

ptypUINT

Datablock size (in units of 32-bit words)

2

...

packedcharMsg

ptypPACKEDCHAR

Datablock containing ASCII characters - defined as an array of size
uintDataCount with elements of type ptypPACKEDCHAR. Each ele-
ment of type ptypPACKEDCHAR contains up to four ASCII characters.
The first of the four characters occupies the least significant bits (#0 to
#7) of the 32-bit element. The unused space of the last element in the
array is padded with NULL characters.

Result data format: UNICODE

Table 8-7: Data body format for UNICODE result datastream (typTRANSMISSIONRESULT_UNICODE)

Word
position
in Data
body

Member name

Member type

Description

1 uintDataCount

ptypUINT

Datablock size (in units of 32-bit words)

2

...

packedunicodeMsg

ptypPACKEDUNICODE

Datablock containing UNICODE characters - defined as an array
of size uintDataCount with elements of type
ptypPACKEDUNICODE. Each ptypPACKEDUNICODE element con-
tains two UNICODE characters. The first of the two characters
occupies the least significant bits (#0 to #15) of the 32-bit element.
The unused space of the last element in the array is padded with
the NUL character.

Result data format: ATIS

Table 8-8: Data body format for ATIS result datastream (typTRANSMISSIONRESULT_ATIS)

Word
position
in Data
body

Member name

Member type

Description

1 uintCountryCode

ptypUINT

Country Code, Values: 0-999

2

3

packedcharShipID

ptypPACKEDCHAR

Ship Identifier - ASCII string of 5 characters. Defined as an array con-
taining kATIS_SHIPID_LEN = 2 elements of type ptypPACKEDCHAR

Result data format: FMS-BOS

The FMS-BOS decoder evaluates the main message block from which it extracts the
sent information. The following message blocks will be ignored by the decoder.

Transmission System Result (TSR) Data Formats

Decoder DatastreamsAMMOS Datastreams

55Reference Document 4094.8964.02 ─ 04

Table 8-9: Data body format for FMS-BOS result datastream (typTRANSMISSIONRESULT_FMS_BOS)

Word
position
in Data
body

Member name

Member type

Description

1 uintBOS

ptypUINT

BOS ID (4 bits) - Authority/Organization Identifier
● 1 - Polizei
● 2 - Bundesgrenzschutz
● 3 - Bundeskriminalamt
● 4 - Katastrophenschutz
● 5 - Zoll
● 6 - Feuerwehr
● 7 - Technisches Hilfswerk
● 8 - Arbeiter-Samariter-Bund
● 9 - Deutsches Rotes Kreuz
● 10 - Johanniter-Unfall-Hilfe
● 11 - Malteser-Hilfsdienst
● 12 - Deutsche Lebensrettungsgesellschaft
● 13 - Rettungsdienst
● 14 - Zivilschutz
● 15 - Fernwirktelegramme

2 uintState

ptypUINT

State/country Code (4 bits)
● 1 - Bund
● 2 - Baden-Würtemberg
● 3 - Bayern I
● 4 - Berlin
● 5 - Bremen
● 6 - Hamburg
● 7 - Hessen
● 8 - Niedersachsen
● 9 - Nordrhein-Westfalen
● 10 - Rheinland-Pfalz
● 11 - Schleswig-Holstein
● 12 - Saarland
● 13 - Bayern II
● 14 - Mecklenburg-Vorpommern (District 00:49) Sachsen-Anhalt

(District 50:99)
● 15 - Brandenburg (District 00:49) Thüringen (District 50:99)

3 uintDistrict

ptypUINT

District identifier (4 bits), Values: 0-0xFF

4 packedcharVehicle

ptypPACKEDCHAR

Vehicle identifier (4 BCD digits)

5 uintStatus

ptypUINT

Call Status (4 bits). Direction dependent interpretation. For details see
table 8-10

6 uintZBV

ptypUINT

ZBV Identifier - special purpose fields.
● Bits #3 and #2 - Special purpose indication 1, 2, 3 and 4 corre-

sponding to values 00, 01, 10 and 11
● Bit #1 - Direction indicator - the value 0 indicates mobile party to

base and the value 1 indicates base to mobile party
● Bit #0 - ACK indicator - the value 0 indicates system with tonal

acknowledge and the value 1 indicates system with digital
acknowledge

Transmission System Result (TSR) Data Formats

Decoder DatastreamsAMMOS Datastreams

56Reference Document 4094.8964.02 ─ 04

Table 8-10: FMS-BOS Status identifier (uintStatus)

value Direction: Base to mobile Direction: Mobile to base

0 Status query

Statusabfrage

Emergency

Notruf

1

to

7

BOS-service specific designation

Festlegung nach dienstspezifischer BOS-Ver-
einbarung

BOS-service specific designation

Festlegung nach dienstspezifischer BOS-Ver-
einbarung

8 Remote signaling criterion #1

Fernwirkkriterium I

BOS-service specific designation

Festlegung nach dienstspezifischer BOS-Ver-
einbarung

9 Remote signaling criterion #2

Fernwirkkriterium II

Manual acknowledge / 3rd party login

Handquittung/Fremdanmeldung

10 Initiate extended message

Vorbereitung Folgetelegramm

Initiate extended message

Vorbereitung Folgetelegramm

11 End extended message

Ende Folgetelegramm

End extended message

Ende Folgetelegramm

12

13

Available for digital pagers

Frei für digitale Meldeempfänger

Available for special purpose usage

Frei für Sonderanwendungen

14 Available for digital pagers

Frei für digitale Meldeempfänger

Automatic acknowledge

Automatische Quittung

15 Automatic acknowledge

Automatische Quittung

Talk-key

Sprechtaste

Result data format: ZVEI

Table 8-11: Data body format for ZVEI result datastream (typTRANSMISSIONRESULT_ZVEI)

Word
position
in Data
body

Member name

Member type

Description

1 boolFrameCheckSum
IsCorrect

ptypBOOL

CRC check result, Values: pkTRUE or pkFALSE (pkTRUE means
CRC checksum is correct)

2 uintBAK

ptypUINT

Mode of operation ID (BAK is the German abbreviation for
"Betriebsartenkennung"), Values: 0-15. For details see: table 8-13

3 uintStatus

ptypUINT

Status - custom configurable content, Values: 0-15

4 uintEVU

ptypUINT

Manufacturer and model identification (EVU is the German
abbreviation for Energie Versorgungs Unternehmen = electric utility
organization)
● Bits #15 to #8 - Transmitting device model identification
● Bits #7 to #0 - Transmitting device manufacturer identification

5 packedcharCallNumber

ptypPACKEDCHAR

Call number - ASCII string

Transmission System Result (TSR) Data Formats

Decoder DatastreamsAMMOS Datastreams

57Reference Document 4094.8964.02 ─ 04

Result data format: ZVEI-VDEW

Table 8-12: Data body format for ZVEI-VDEW result datastream (typTRANSMISSIONRESULT_
ZVEI_VDEW)

Word
position
in Data
body

Member name

Member type

Description

1 boolFrameCheckSum
IsCorrect

ptypBOOL

CRC check result (pkTRUE means CRC checksum is correct)

2 uintBAK

ptypUINT

Mode of operation ID (BAK is the German abbreviation for
"Betriebsartenkennung"), Values: 0-15. For details see: table 8-13

3 uintStatus

ptypUINT

Status - custom configurable content, Values: 0-15. Only relevant
for ZVEI.

4 uintEVU

ptypUINT

Manufacturer and model identification (EVU is the German
abbreviation for Energie Versorgungs Unternehmen = electric utility
organization)
● Bits #15 to #8 - Transmitting device model identification
● Bits #7 to #0 - Transmitting device manufacturer identification

5 uintDataCount

ptypUINT

Size of the following call number, in 32-bit data words, Values:
0-1023

6

...

packedcharCallNumber

ptypPACKEDCHAR

Call number - ASCII string (size given by uintDataCount in 32-
bit words)

Table 8-13: BAK - Mode of operations for ZVEI and ZVEI-VDEW transmission systems (uintBAK)

value
Interpretation for ZVEI Interpretation for ZVEI-VDEW

German description English description German description English description

0 Frei verfügbar Freely available Frei verfügbar Freely available

1 Ruf zum Fahrzeug1 Call to vehicle unit1 Ruf zum Mobilstation 1 Call to mobile unit1

2 Ruf zum Leitstelle1 Call to base unit1 Durchwahl1 Direct dial1

3 Kennung Identification Kennung Identification

4 Quittung passiv Acknowledge - pas-
sive Quittung passiv Acknowledge - passive

5 Reserved Folgeinformation Pursuant information

6 Trennruf1 Disconnect1 Schlussruf1 Disconnect1

7 Reserved Rueckruf1 Callback1

8 Vorrangruf1 Priority call1 Notruf 1 Emergency call1

9 Statusabfrage1 Status query1 Statusabfrage/ -antwort1 Status query / response1

10 Reserved Lockruf (Positionskon-
trolle)1 Birdcall (position check)1

11 Quittung aktiv Acknowledge - active Quittung aktiv Acknowledge - active

Transmission System Result (TSR) Data Formats

Decoder DatastreamsAMMOS Datastreams

58Reference Document 4094.8964.02 ─ 04

value
Interpretation for ZVEI Interpretation for ZVEI-VDEW

German description English description German description English description

12 Reserved Kurzwahl1 Abbreviated-dialing1

13 Frei verfügbar Freely available Daten Data

14 Frei verfügbar Freely available Reserved

15 Notruf Emergency call Nicht belegt Unused

Note: 1 Requires receipt

Result data format: POCSAG

Table 8-14: Data body format for POCSAG result datastream (typTRANSMISSIONRESULT_POCSAG)

Word
position
in Data
body

Member name

Member type

Description

1 boolFrameCheck
SumIsCorrect

ptypBOOL

CRC check result
● pkTRUE means CRC checksum is correct
● pkFALSE indicates that a non-recoverable CRC was detected, and

the data part (packedcharMsg) is incomplete

2 uintBaudrate

ptypUINT

Baud rate (can have one of the following values: 512, 1200, 2400 sym-
bols/s)

3 uintFullAddress

ptypUINT

Address specifier for the called unit
● Bits #22 to #5 - Transmitting device identification
● Bits #4 to #2 - Group ID
● Bits #1 to #0 - this field indicates the content type of the message

payload. ITU-R M.584-2 defines two message types: 4-bit numeric
only and 7-bit (International Alphabet #5) alpha-numeric
– 00 - indicates that the message uses 4-bit characters which

are mapped into a set of (ASCII) characters containing:
numeric characters 0… 9, left and right square brackets [
and], the hash character # (representing SPARE), character
U as urgent indicator, space character, hyphen character -

– 11 - indicates that the message uses 7-bit characters (ASCII)
defined as Alphabet #5 on the CCITT standard

– 01 or 10 - indicates that the message type is agreed
between the transmitting party and the receiving party. The
transmitted data is placed in the message payload as a
sequence of bits; the bit of least significance of the first ele-
ment in the data payload is the first bit in the transmission

Transmission System Result (TSR) Data Formats

Decoder DatastreamsAMMOS Datastreams

59Reference Document 4094.8964.02 ─ 04

Word
position
in Data
body

Member name

Member type

Description

4 uintDataCount

ptypUINT

Size of the following message (in units of 32-bit words), Values:
0-1023

5

...

packedcharMsg

ptypPACKEDCHAR

Message - ASCII string (defined as an array of ptypPACKEDCHAR ele-
ments with size uintDataCount). A message is transmitted as a
sequence of 32-bit words. Each word carries 20 bits of data, and 12
redundancy bits. When a CRC error is detected in the transmitted mes-
sage data, the receiver will terminate assembling data. The data is then
made available, along with the CRC error indication. In this case the
data payload will only contain the message data assembled from the
beginning of the message, up to the point at which the CRC error was
detected. Each time a new message is started, all the bits of the data
payload are initialized to 0. Thus if a message is interrupted (i.e. a CRC
error was detected), then all the bits in the un-filled part of the payload
contain 0.

Result data format: PACKET_RADIO

Table 8-15: Data body format for PACKET_RADIO result datastream (typTRANSMISSIONRE-
SULT_PACKET_RADIO)

Member name

Member type

Description

boolFrameCheckSumIsCorrect

ptypBOOL

CRC check result
● pkTRUE means CRC checksum is correct
● pkFALSE indicates that a non-recoverable CRC was

detected, and the data part (packedcharMsg) does not
contain all the data from the transmission

uintFrameType

ptypUINT

Frame type identifier
● Frame type Information - 0
● Frame type Supervisory - 1
● Frame type Unnumbered - 2

uintPID

ptypUINT

Protocol Identifier - indicates the ISO/OSI level 3 protocol
used by message, Values: 0-255
● AX.25 layer 3 implemented Binary – xx01xxxx or

xx10xxxx (where the x positions can have any value)
● ISO 8208/CCITT X.25 PLP - 0x01
● Compressed TCP/IP - 0x06
● Uncompressed TCP/IP - 0x07
● Segmentation fragment - 0x08
● TEXNET datagram protocol - 0xC3
● Link Quality protocol - 0xC4
● Appletalk - 0xCA
● Appletalk ARP - 0xCB
● ARPA Internet Protocol - 0xCC
● ARPA Address Resolution - 0xCD
● FlexNet - 0xCE NET/ROM - 0xCF
● Layer 3 protocol implemented - 0xF0
● Escape character indicating that the next octet contains

further (alternative) Level 3 protocol information - 0xFF

Transmission System Result (TSR) Data Formats

Decoder DatastreamsAMMOS Datastreams

60Reference Document 4094.8964.02 ─ 04

Member name

Member type

Description

packetradioaddressAddressField

typPACKETRADIO_ADDRESS_FIELD

The Address Field identifies both the source of the frame and
its destination. In addition, the address field contains the com-
mand/response information and facilities Layer 2 repeater
operation. The structure typPACKETRADIO_ADDRESS_FIELD
that encapsulates the address field contains following ele-
ments:

{ packetradioaddressSource

typPACKETRADIO_ADDRESS

Source address

packetradioaddressRouter1

typPACKETRADIO_ADDRESS

Address of the first router

packetradioaddressRouter2

typPACKETRADIO_ADDRESS

Address of the second router

packetradioaddressDestination

typPACKETRADIO_ADDRESS

Destination address

}

 The structure typPACKETRADIO_ADDRESS that encapsulate the address information contains the
following elements:

{ packedcharCallSign

ptypPACKEDCHAR

Callsign - ASCII string (defined as an array of
ptypPACKEDCHAR elements with size kPACKETRADIO_
CALLSIGN_LEN=2). Not used space is filled with Space char-
acters.

uintSSID

ptypUINT

SSID - Secondary Station Identifier, Values: 0-15. Used to
separate destinations with identical Callsign

boolFlag

ptypBOOL

Flag - Command/Response/H-Bit. The H-Bit indicates that the
Layer 2 of the repeater station has repeated the frame. Val-
ues: pkTRUE, pkFALSE.

}

packetradiocontrol fieldControlField

typPACKETRADIO_ CONTROL_FIELD

Control-Field - the union
typPACKETRADIO_CONTROL_FIELD that encapsulates the
info field contains three structures associated to the three pos-
sible frame types: Information, Supervisory and Unnumbered.
The elements of these structures are described below:

{ I uintNS

ptypUINT

Send sequence number, Values: 0-127

uintNR

ptypUINT

Receive sequence number, Values: 0-127

boolFlag

ptypBOOL

Poll/Final bit, Values: pkTRUE, pkFALSE

Transmission System Result (TSR) Data Formats

Decoder DatastreamsAMMOS Datastreams

61Reference Document 4094.8964.02 ─ 04

Member name

Member type

Description

U uintM

ptypUINT

Modifier function, Values: 0-9
● 0 UI Unnumbered Information Frame
● 1 DM Disconnect Mode
● 2 SABM Connect Request
● 3 DISC Disconnect request
● 4 UA Unnumbered Acknowledge
● 5 SABME Connect Request Extended
● 6 FRMR Frame Reject
● 7 XID Exchange Identifications
● 8 TEST Test
● 9 MF_UNKNOWN Unknown, function type could not be

identified correctly

boolFlag

ptypBOOL

Poll/Final bit, Values: pkTRUE, pkFALSE

S uintS

ptypUINT

Supervisory function, Values: 0-4
● 0 RR Receive Ready
● 1 RNR Receive Not Ready
● 2 REJ Reject Frame
● 3 SREJ Selective Reject
● 4 SF_UNKNOWN Unknown, function type could not be

identified correctly

uintNR

ptypUINT

Receive sequence number, Values: 0-127

boolFlag

ptypBOOL

Poll/Final bit, Values: pkTRUE, pkFALSE

}

packetradioinfofield InfoField

typPACKETRADIO_ INFO_FIELD

Info-Field - the structure typPACKETRADIO_INFO_FIELD
that encapsulates the info field contains following elements:

{ uintDataCount

ptypUINT

Size of the following message (in units of 32-bit words), Val-
ues: 0-256. The value 0 is used to signal the link disconnec-
tion action

packedcharMsg

ptypPACKEDCHAR

Message - ASCII string not necessarily NULL terminated
(defined as an array of ptypPACKEDCHAR elements with size
uintDataCount)

}

Transmission System Result (TSR) Data Formats

Decoder DatastreamsAMMOS Datastreams

62Reference Document 4094.8964.02 ─ 04

Result data format: MPT1327

Table 8-16: Data body format for MPT1327 result datastream (typTRANSMISSIONRESULT_MPT1327)

Member name

Member type

Description

uintStatusWord

ptypUINT

Status Word - determines the content type of the datablock:
● Bits #31 to #3 - Reserved; must always be 0
● Bit #2 - set to 1 indicates that the payload data is of type

Message-Datablock
● Bit #1 - set to 1 indicates that the payload data is of type

Connection-Datablock
● Bit #0 - set to 1 indicates that the payload data is of type

ControlChannel-Block

mpt1327Data

typTRANSMISSIONRESULT_MPT1327_
DATA

Datablock for the MPT 1327 transmission mode - the union
typTRANSMISSIONRESULT_MPT1327_DATA contains three
structures associated to control, connection and message data
types as presented below:

{ mptControlChannelData

typMPT_1327_CONTROL_
CHANNEL_BLOCK

Structure typMPT_1327_CONTROL_CHANNEL_BLOCK for the
MPT 1327 - Control Channel System Codeword (CCSC). Sent
for identification of the base station, usually sent only once.

{ uintSystemID

ptypUINT

Unique ID of the MPT 1327 TSC (Trunked System Controller)

uintControlChannelID

ptypUINT

Channel number of the control channel, Values: 0-1024

uintControlChannel

Frequency_Low

ptypUINT

64-bit Frequency of the control channel [Hz] - least significant
32 bits (_Low) followed by most significant 32 bits (_High)

uintControlChannel

Frequency_High

ptypUINT

}

mptConnectionData

typMPT_1327_CONNECTION_
BLOCK

Structure typMPT_1327_CONNECTION_BLOCK for the MPT
1327 - Every activity in the network is reported through a con-
nection datablock. Address Information for the active connec-
tion:

{ uintTransmissionType

ptypUINT

The type of the intercepted transmission (see the correspond-
ing definitions at the beginning of the header file):
● VOICE_TRANSMISSION - 0
● DATA_TRANSMISSION - 1
● SHORT_DATA_MESSAGE - 2
● SYSTEM_OPERATION - 3

packedcharFromRadio

ptypPACKEDCHAR

Calling Radio Unit identifier (PFIX - 7bit prefix and IDENT -
13bit identifier) (array of ptypPACKEDCHAR elements with size
kMPT1327_RADIO_LEN=2)

packedcharToRadio

ptypPACKEDCHAR

Called Radio Unit identifier (PFIX and IDENT) (array of
ptypPACKEDCHAR elements with size
kMPT1327_RADIO_LEN)=2

Transmission System Result (TSR) Data Formats

Decoder DatastreamsAMMOS Datastreams

63Reference Document 4094.8964.02 ─ 04

Member name

Member type

Description

uintChannelNumber

ptypUINT

The channel allocated for VOICE_TRANSMISSION or
DATA_TRANSMISSION, Values: 0-1024

uintChannelFrequency_

Low

ptypUINT

64-bit Frequency of the allocated channel [Hz] - least signifi-
cant 32 bits (_Low) followed by most significant 32 bits (_High)

uintChannelFrequency_

High

ptypUINT

uintAcceptedFrames

ptypUINT

Number of error free received frames in percent, Values:
0-100

}

mptMessageData

typMPT_1327_MES-
SAGE_BLOCK

Structure typMPT_1327_MESSAGE_BLOCK for the MPT 1327
- Message block

{ uintDataCount

ptypUINT

Length of the following message (in units of 32-bit words)

packedcharMessage

ptypPACKEDCHAR

Message (array of ptypPACKEDCHAR elements with size
uintDataCount)

}

}

Result data format: ACARS

Table 8-17: Data body format for ACARS result datastream (typTRANSMISSIONRESULT_ACARS)

Word
position
in Data
body

Member name

Member type

Description

1 boolCRCresult

ptypBOOL

Result of the CRC check
● pkTRUE means CRC checksum is correct
● pkFALSE indicates that a non-recoverable CRC was detected,

and the data part (packedcharMsg) might be corrupted

2 packedcharCategoryOf
Operation

ptypPACKEDCHAR

Category of operation (ASCII string) - The Mode characters are
divided into two basic categories which refer to Category A or Cate-
gory B network operation.

3 packedcharAircraftId

ptypPACKEDCHAR

Aircraft ID (ASCII string, 7 characters null terminated) - identifies
the aircraft with which the ground processor is communicating,
broadcast is identified by: ALLCALL (defined as an array of
ptypPACKEDCHAR elements with size 2)

4 packedcharLinkType

ptypPACKEDCHAR

Link type: uplink or downlink (ASCII string: DOWN, UP)

Transmission System Result (TSR) Data Formats

Decoder DatastreamsAMMOS Datastreams

64Reference Document 4094.8964.02 ─ 04

Word
position
in Data
body

Member name

Member type

Description

5 packedcharTechnical
Acknowledgment

ptypPACKEDCHAR

Technical ACK (ASCII string). Positive ACK in DL is identified by
any of the following characters: a to z, A to Z. Positive ACK in UL is
identified by any of the following characters: 0 to 9. Negative ACK
is identified by the string NAK

6 packedcharLabel

ptypPACKEDCHAR

Label code (ASCII string) defines the data packet usage - the list of
assigned labels is defined in ARINC Specification 620

7 packedcharLinkBlockId

ptypPACKEDCHAR

Data packet Identifier (UBI or DBI). A retransmission is identified by
the same LinkBlockID

8 boolMsgIsComplete

ptypBOOL

Message is complete if boolMsgIsComplete is pkTRUE

9 uintDataCount

ptypUINT

Length of the following message (in units of 32-bit words), Values:
0-55. A NACK message has the message length = 0

10

...

packedcharMsg

ptypPACKEDCHAR

Message of the ACARS datagram (array of ptypPACKEDCHAR ele-
ments with size uintDataCount)

Result data format: PACTOR II and III

Table 8-18: Data body format for PACTOR result datastream (typTRANSMISSIONRESULT_PACTOR)

field
offset

Member name

Member type

Description

0 uintPactorVariant

ptypUINT

Pactor Variant

Values: 0 - unknown, 2 - PactorII, 3 - PactorIII

In case the pactor variant is unknown, the fields at offset 1-6,12-21
will carry the default value 0. The field at offset 9 will carry the default
value 0.0. The fields at offsets 7,8,10,11 will still be valid. The field
at offset 21 will be the last field in the data body.

1 uintTypeOfBurst

ptypUINT

Type of Burst

Values: 0 - unknown, 1 - CS (control signal), 2 - DATA (contains user
data), 3 - IDLE (sent in chat mode if no data available), 4 - CALLSIGN
(signaling information)

The CS burst is used in case of ARQ transmissions to confirm the
receipt of a burst back to the sender

2 uintSpeedLevel

ptypUINT

Speed Level

Values: (0 - n/a), 1-6. The values 5 and 6 are valid only for PactorII

3 uintPathMode

ptypUINT

Path Mode

Values: 0 - n/a, 1 - unknown2, 2 - normal path , 3 - long path (stations
> 20000km apart)

4 uintTransmissionMode

ptypUINT

Transmission Mode

Values: 0 - n/a, 1 - unknown2, 2 - ARQ transmission, 3 - unproto (non-
ARQ) transmission

Transmission System Result (TSR) Data Formats

Decoder DatastreamsAMMOS Datastreams

65Reference Document 4094.8964.02 ─ 04

field
offset

Member name

Member type

Description

5 uintIsDataMode

ptypUINT

indicates whether Data Mode is used for this packet

Values: 0 - n/a, 1 - unknown, 2 - yes (data mode needs longer bursts
than normal mode), 3 - no (normal mode is used for this burst)

Unknown, is used if uintTypeOfBurst indicates a CS burst

6 uintIsChatMode

ptypUINT

indicates whether Chat Mode is being used

Values: 0 - n/a, 1 - unknown, 2 - yes, 3 - no

Unknown, is used if uintTypeOfBurst indicates a CS burst

Note: for future use, currently always value 1

7 float_spBurstLength

ptypFLOAT_SP

detected Burst Length in [ms]

8 uintCenterFrequency

ptypUINT

detected RF Center Frequency of emission in [Hz]

9 float_spSymbolRate

ptypFLOAT_SP

detected Symbol Rate of emission in [Bd]

10 float_spSignalLevel

ptypFLOAT_SP

detected Signal Level of burst in [dBµV]

11 float_spSNR

ptypFLOAT_SP

detected Signal to Noise Ratio in [dB]

12 uintSideband

ptypUINT

detected Sideband

Values: 0 - unknown, 1 - upper sideband, 2 - lower sideband

13 uintPacketNumber

ptypUINT

a 2-bit Packet Number, Values: 0-3

14 uintDataType

ptypUINT

User Data Encoding, Values: 0-7 (see the definition of the
kTRS_PACTOR_DATATYPE_xxx constants in the header file.
● 0 - ASCII-8-bit
● 1 - Huffman (normal)
● 2 - Huffman (swapped, upper case)
● 3 - reserved
● 4 - PMC German (normal)
● 5 - PMC German (swapped)
● 6 - PMC English (normal)
● 7 - PMC English (swapped)

PMC stands for Pseudo-Markov Compression (proprietary compres-
sion method)

15 uintDataMode

Suggestion

ptypUINT

Data Mode Suggestion

Values: 0 - off, 1 - on

16 uintSLchangeoverReq

ptypUINT

Speed Level Changeover Request

Values: 0 - request off, 1 - request on

17 uintIsQRTPacket

ptypUINT

flag describing whether this packet is a QRT packet, (QRT indicates
the request to stop data transmission)

Values: 0 - no, 1 - yes

Transmission System Result (TSR) Data Formats

Decoder DatastreamsAMMOS Datastreams

66Reference Document 4094.8964.02 ─ 04

field
offset

Member name

Member type

Description

18 uintCRC

ptypUINT

CRC 16-bit checksum, Values: 0-65535

19 uintDecodingQuality

ptypUINT

Quality of decoded bytes that are delivered with this result frame,
Values: (0 - n/a) 1-15, where 15 denotes best quality

20 uintContentType

ptypUINT

Content Type

Values: 0 - unknown (so the current visualization is to be maintained),
1 - text data, 2 - binary data

Note: for future use, currently always value 0

21 uintDataByteCount

ptypUINT

Number of Decoded Bytes in [bytes]. Represents the amount of user
data extracted from the pactor message belonging to this result frame;
the user data is delivered from offset 22 of the data body onwards if
uintDataByteCount > 0
Values: 0-kTRS_PACTOR_DATABYTECNT_MAX

22

...

packedcharData

ptypPACKEDCHAR

User Data extracted from the pactor packet (array of
ptypPACKEDCHAR elements with size =
((uintDataByteCount-1)/4 + 1))

Note: 2Unknown is used in the very first burst after start of processing, since the path
mode can only be detected after receipt of two bursts

Result data format: CLOVER

Table 8-19: Data body format for CLOVER result datastream (typTRANSMISSIONRESULT_CLOVER)

field
offset

Member name

Member type

Description

0 uintTypeOfBlock

ptypUINT

Type of transmitted data

Values: 0 - User Data , 1 - Control information

1 uintCloverHeader

ptypUINT

Header information from the clover burst

2 uintSpeedLevel

ptypUINT

Speed Level

Values: (0 - n/a), 1-6. See definition of constants kTRS_SL_xxx. The
data rate is increased by th choice of higher modulation
● 1: 2DPSK2A
● 2: PSK2A
● 3: PSK4A
● 4: PSK8A
● 5: PSK8A/ASK26
● 6: PSK16A/ASK4

3 uintRSCodeEfficiency

ptypUINT

Efficiency of the used Reed-Solomon coding
● 0 - unknown (checksum length is not recognized)
● 1 - robust (Data block contains 60% data and 40% checksum)
● 2 - normal (Data block contains 75% data and 25% checksum)
● 3 - fast (Data block contains 90% data and 10% checksum)
● 4 - off (Data block is sent without any checksum)

Transmission System Result (TSR) Data Formats

Decoder DatastreamsAMMOS Datastreams

67Reference Document 4094.8964.02 ─ 04

field
offset

Member name

Member type

Description

4 uintCloverDataBlock
Size

ptypUINT

Clover data block size in bytes - Length of the current data block
(data block = data header+data+checksum). The size can take one of
the following values: [17, 51, 85, 255]

5 uintPacketNumber

ptypUINT

Packet Number

Note: for future use, currently always value 0

6 uintSideband

ptypUINT

detected Sideband

Values: 0 - unknown, 1 - upper sideband, 2 - lower sideband

7 uintCenterFrequency

ptypUINT

detected RF Center Frequency of emission in [Hz]

8 uintContentType

ptypUINT

Content type

Values: 0 - n/a, 1 - text data, 2 - binary data

Note: for future use, currently always value 1

9 uintDataByteCount

ptypUINT

Number of Decoded Bytes in [bytes]. Represents the amount of user
data extracted from the message belonging to this result frame; the
user data is delivered from offset 10 of the data body onwards if
uintDataByteCount > 0
Values: 0-kTRS_CLOVER_DATABYTECNT_MAX

10

...

packedcharData

ptypPACKEDCHAR

User Data extracted from the clover packet (array of
ptypPACKEDCHAR elements with size =
((uintDataByteCount-1)/4 + 1))

Result data format: F7W

Table 8-20: Data body format for F7W result datastream (typTRANSMISSIONRESULT_F7W)

Member name

Member type

Description

float_spF7WBaudRate

ptypFLOAT_SP

Symbol rates for the two logical Bitstreams

uintNumberOf

OutputChannels

ptypUINT

Number of channels provided in this result frame

transmissionresult_f7w_
output_channels

typTRANSMISSION
RESULT_OUTPUT _CHAN-
NEL

Channel result data, (defined as an array of
typTRANSMISSIONRESULT_OUTPUT_CHANNEL elements with size
uintNumberOfOutputChannels). The elements of the structure
typTRANSMISSIONRESULT_OUTPUT_CHANNEL are given below:

{ uintChannel

Number

ptypUINT

Channel number to identify one message (e.g. for 0..1 the sender gener-
ates two independent messages)

uintSubChannel
Number

ptypUINT

Subchannels are used to present various output formats of the message
(e.g. 0..1 -> 2 subchannels per channel)

Transmission System Result (TSR) Data Formats

Decoder DatastreamsAMMOS Datastreams

68Reference Document 4094.8964.02 ─ 04

Member name

Member type

Description

packedcharSub
ChannelName

ptypPACKEDCHAR

Subchannel name, (defined as an array of ptypPACKEDCHAR elements
with size kTRS_OUTPUTCHANNEL_STR_LEN = 10)

uintPayloadType

ptypUINT

Payload type of the output channel
● 0 - RAW - in this case the Payload is of type ptypUINT
● 1 - ASCII - in this case the Payload is of type ptypPACKEDCHAR (4

ASCII characters get packed into one 32-bit word)
● 2 - MORSE in this case the Payload is of type ptypPACKEDCHAR

(one Morse-element (dash, dot, pause, etc.) is packed into one 32-bit
word, see table below)

uintElementSize

ptypUINT

Size of result element in [bits] (8 bits for ASCII, 32 bits for MORSE, any
for RAW)

uintElementCount

ptypUINT

Number of result elements of size specified by uintElementSize

uintPayloadSize

ptypUINT

Length of the payload uintPackedChannelPayload in units of 32-bit
words, bits not used are set to 0

uintChannelPayload

ptypUINT

Payload, (defined as an array of ptypUINT elements with size
uintPayloadSize)

}

Table 8-21: Mapping TRS payload value to Morse data

Morse data Binary
value

Hex
value

Constant defined in header file

DOT tone 00000000 0x0 kTRS_OUTPUTCHANNEL_MORSE__DOT

DASH tone 00000001 0x1 kTRS_OUTPUTCHANNEL_MORSE__DASH

inter-tone gap 00000010 0x2 kTRS_OUTPUTCHANNEL_MORSE__SHORT_PAUSE

inter-character gap 00000011 0x3 kTRS_OUTPUTCHANNEL_MORSE__MEDIUM_PAUSE

inter-word gap 00000100 0x4 kTRS_OUTPUTCHANNEL_MORSE__LONG_PAUSE

new line 00000101 0x5 kTRS_OUTPUTCHANNEL_MORSE__NEW_LINE

Error messages

tone too short 10000000 0x40 kTRS_OUTPUTCHANNEL_MORSE__DOT_TOO_SHORT

tone too long 10000001 0x41 kTRS_OUTPUTCHANNEL_MORSE__DASH_TOO_LONG

gap too short 10000010 0x42 kTRS_OUTPUTCHAN-
NEL_MORSE__PAUSE_TOO_SHORT

Transmission System Result (TSR) Data Formats

Decoder DatastreamsAMMOS Datastreams

69Reference Document 4094.8964.02 ─ 04

Result data format: PDU

Table 8-22: Data body format for generic PDU result datastream format (typTRANSMISSIONRE-
SULT_PDU)

Member name

Member type

Description

uintCOMMSYSTYPE

ptypUINT

Unique Communication System ID of the system which produced this
result (see also comm_sys.h)

uintPDU_ID

ptypUINT

Unique PDU ID, identifying the PDU within this frame

uintNumberOfPDU_

Members

ptypUINT

Number of PDU members

transmissionresult_pdu_
members

typTRANSMISSIONRESULT
_PDU_MEMBER

PDU member (s), (defined as an array of
typTRANSMISSIONRESULT_PDU_MEMBER elements of length
uintNumberOfPDU_Members). The elements of the structure
typTRANSMISSIONRESULT_PDU_MEMBER are given below:

{ uintPDU_Member_
ElementSize

ptypUINT

Element size = s in [bits] - size of the elements in the PDU member pay-
load

uintPDU_Member_
ElementCount

ptypUINT

Number of elements = n in the PDU member payload

uintPDU_Member_
SizeInWords

ptypUINT

Payload size of the PDU member

uintPDU_Member_SizeInWords = ceil((uintPDU_Member_ElementSize *
uintPDU_Member_ElementCount)/(8*pdemSIZEOF(ptypUINT)))

uintPDU_Member

ptypUINT

Payload - Sequence of n elements of size s (packed in a container defined
as an array of ptypUINT elements of length
uintPDU_Member_SizeInWord).

}

In order to interpret the parameters of the PDU format, an application extension in form
of a .dll file is needed along the main application (the file is found in the installation
directory of the application: PDU_Converter.dll)

Transmission System Result (TSR) Data Formats

Detector DatastreamsAMMOS Datastreams

70Reference Document 4094.8964.02 ─ 04

9 Detector Datastreams

9.1 Emission List Data Format

The Emission List Data format describes the
ekFRH_DATASTREAM__EMISSION_LIST_DATA datastream type.

Emission List Data Frame Structure

The structure of the Emission List Datastream is defined in the
rs_gx40x_emissions_list_if_defs.h header file.

The Data Frame consists of the global Frame header of type typFRH_FRAMEHEADER,
as described in "Global Frame header" on page 5, followed by the datastream-specific
Frame body.

The corresponding "Frame Type" value from the Frame header for this datastream
type can be found in the global frame types header file:
rs_gx40x_global_frame_types_if_defs.h.

The Frame body consists of: the Data header which describes the datastream payload
and the Data body which contains the actual datastream payload.

Fig. 9-1: Emission List Data frame format

Limited use of the frame structure definition: typEMISSION_LIST_FRAME
The structure definition for the entire frame format, defined in the corresponding
header file, is used to illustrate the structure of the data frame and is also suitable for
data generation. Do not use this structure for data parsing because new frame ver-
sions can use extended header types which might lead to wrong addressing in the
frames. Use the Data Header Length information from the global Frame Header to
correctly access the data samples after the Data Header.

Emission List Data header

The Data header describes the datastream payload (such as number of Data samples
contained in this frame), and contains common parameters of the Data samples.

The Emission List Data header structure, of type typEMISSION_LIST_HEADER, is
described in the following table (Data header length = 5).

Emission List Data Format

Detector DatastreamsAMMOS Datastreams

71Reference Document 4094.8964.02 ─ 04

Table 9-1: Emission List Data header (typEMISSION_LIST_HEADER)

Word
position
in frame

Member name

Member type

Description

7 uintEmissionCount

ptypUINT

Emission count: number of emissions in this frame

8 uintStatusword

ptypUINT

Status word (bit-coded):
● Bit #31 - Status of (this) emission tracking table entry con-

taining a list of 0 or more records, each pertaining to an
emission. 1 indicates that there are no emissions listed in
this emission tracking table entry.

● Bits #30 to #4 - Reserved (must be set to 0)
● Bits #3 to #0 - Tracking table entry ID. A tracking table

entry contains a list of 0 or more records. Each record per-
tains to an emission.

9 uintCenterFrequency_Low

ptypUINT

64-bit Center Frequency of the signal band analyzed, and
from which the detected emissions come [Hz] - least significant
32 bits (uintCenterFrequency_Low) followed by most significant
32 bits (uintCenterFrequency_High)10 uintCenterFrequency_High

ptypUINT

11 uintBandwidth

ptypUINT

Bandwidth [Hz] of the analyzed signal band

The values contained in the data header fields represent the status at the beginning of
the frame. A modification happening during the transmission of a frame will only be
noted in the data header of the next frame.

Emission List Data body

The Emission List Data body contains the actual Emission Data, defined as a structure
of typEMISSION_DATA elements. The number of emissions contained in this structure
was given in the Data header element: Emission count.
Table 9-2: Emission List Data body element (typEMISSION_DATA)

Word
offset

Member name

Member type

Description

0 uintEmissionID

ptypUINT

Emission identifier

1

2

bigtimeTimeStamp

ptypBIGTIME

64-bit Timestamp [µs] - Absolute time of the signal spectrum in
which this emission was detected

3 uintCenterFrequency_Low

ptypUINT

64-bit Center Frequency of this emission [Hz] - least signifi-
cant 32 bits (uintCenterFrequency_Low) followed by most sig-
nificant 32 bits (uintCenterFrequency_High)

4 uintCenterFrequency_High

ptypUINT

5 uintBandwidth

ptypUINT

Bandwidth [Hz] of this emission

Emission List Data Format

Detector DatastreamsAMMOS Datastreams

72Reference Document 4094.8964.02 ─ 04

Word
offset

Member name

Member type

Description

6 intLevel

ptypUINT

Detected Signal level (in dBm/Hz) of this emission

7 signal_statiSignalStatus

typSIGNAL_STATI

Current Status of this emission. Following status are possible:
● ekSIGNAL_STATI_ACTIVE
● ekSIGNAL_STATI_INACTIVE
● ekSIGNAL_STATI_DECAYED
● ekSIGNAL_STATI_UNKNOWN

9.2 Spectral Detector List Data Format

The Spectral Detector List Data format describes the
ekFRH_DATASTREAM__SPECTRALDETECTOR_DATA datastream type.

Spectral Detector List Data Frame Structure

The structure of the Spectral Detector List Datastream is defined in the
rs_gx40x_spectraldetector_list_if_defs.h header file.

The Data Frame consists of the global Frame header of type typFRH_FRAMEHEADER,
as described in "Global Frame header" on page 5, followed by the datastream-specific
Frame body.

The corresponding "Frame Type" value from the Frame header for this datastream
type can be found in the global frame types header file:
rs_gx40x_global_frame_types_if_defs.h.

The Frame body consists of: the Data header which describes the datastream payload
and the Data body which contains the actual datastream payload.

Fig. 9-2: Spectral Detector List Data frame format

Spectral Detector List Data header

The Data header describes the datastream payload (such as number of Data samples
contained in this frame), and contains common parameters of the Data samples.

The Spectral Detector List Data header structure, of type
typSPECTRALDETECTOR_LIST_HEADER, is described in the following table (Data
header length = 9).

Spectral Detector List Data Format

Detector DatastreamsAMMOS Datastreams

73Reference Document 4094.8964.02 ─ 04

Table 9-3: Spectral Detector List Data header (typSPECTRALDETECTOR_LIST_HEADER)

Word
position
in frame

Member name

Member type

Description

7 uintEmissionCount

ptypUINT

Emission count: number of emissions in this frame

8 uintStatusword

ptypUINT

Status word (reserved)

9 uintCenterFrequency_Low

ptypUINT

64-bit Center Frequency of the signal band analyzed, and
from which the detected emissions come [Hz] - least significant
32 bits (uintCenterFrequency_Low) followed by most significant
32 bits (uintCenterFrequency_High)10 uintCenterFrequency_High

ptypUINT

11 uintBandwidth_Low

ptypUINT

64-bit Bandwidth [Hz] of the analyzed band - least significant
32 bits (uintBandwidth_Low) followed by most significant 32
bits (uintBandwidth_High)

12 uintBandwidth_High

ptypUINT

13

14

bigtimeTimeStamp

ptypBIGTIME

64-bit Timestamp [µs] - Absolute time when the emissions
were detected

15 uintAllCategoryCount

ptypUINT

AllCategoryCount - the number of categories in the results
(user defined categories and generic categories)

The values contained in the data header fields represent the status at the beginning of
the frame. A modification happening during the transmission of a frame will only be
noted in the data header of the next frame.

Spectral Detector List Data body

The Spectral Detector List Data body contains the actual Spectral Detector Data,
defined as a structure of typSPECTRALDETECTOR_DATA elements. The number of
emissions contained in this structure was given in the Data header element: Emission
count.
Table 9-4: Spectral Detector List Data body element (typSPECTRALDETECTOR_DATA)

Word
offset

Member name

Member type

Description

1 uintCenterFrequency_Low

ptypUINT

64-bit Center Frequency of this emission [Hz] - least signifi-
cant 32 bits (uintCenterFrequency_Low) followed by most sig-
nificant 32 bits (uintCenterFrequency_High)

2 uintCenterFrequency_High

ptypUINT

3 uintBandwidth

ptypUINT

Bandwidth [Hz] of this emission

Spectral Detector List Data Format

Detector DatastreamsAMMOS Datastreams

74Reference Document 4094.8964.02 ─ 04

Word
offset

Member name

Member type

Description

4 intLevel

ptypUINT

Detected Signal level (in dBm/Hz) of this emission

5

...

uintResults

ptypUINT

Results (bit-coded) - the number of results is given by the uin-
tAllCategoryCount from the Data header.
● Bits #31 to #16 - Category ID, ids above 0x8000 reserved

for generic categories. The values for the generic catego-
ries are defined in the header file.

● Bits #15 to #8 - Flags for result. Bit #08 marks the entry
as winner, only possible for user categories

● Bits #7 to #0 - Confidence for the category, values:
[0,100].

9.3 Burst Emission List Data Format

The Burst Emission List Data format describes the
ekFRH_DATASTREAM__BURST_EMISSIONS_LIST datastream type.

Burst Emission List Data Frame Structure

The structure of the Burst Emission List Datastream is defined in the
rs_gx40x_burst_emissions_list_if_defs.h header file.

The Data Frame consists of the global Frame header of type typFRH_FRAMEHEADER,
as described in "Global Frame header" on page 5, followed by the datastream-specific
Frame body.

The corresponding "Frame Type" value from the Frame header for this datastream
type can be found in the global frame types header file:
rs_gx40x_global_frame_types_if_defs.h.

The Frame body consists of: the Data header which describes the datastream payload
and the Data body which contains the actual datastream payload.

Fig. 9-3: Burst Emission List Data frame format

Burst Emission List Data Format

Detector DatastreamsAMMOS Datastreams

75Reference Document 4094.8964.02 ─ 04

Limited use of the frame structure definition: typBURST_EMISSION_LIST_DATA-
FRAME
The structure definition for the entire frame format, defined in the corresponding
header file, is used to illustrate the structure of the data frame and is also suitable for
data generation. Do not use this structure for data parsing because new frame ver-
sions can use extended header types which might lead to wrong addressing in the
frames. Use the Data Header Length information from the global Frame Header to
correctly access the data samples after the Data Header.

Burst Emission List Data Header

The Data header describes the datastream payload (such as number of Data samples
contained in this frame), and contains common parameters of the Data samples.

The Burst Emission List Data header structure, of type
typBURST_EMISSION_LIST_DATAHEADER, is described in the following table (Data
header length = 9).

Table 9-5: Burst Emission List Data header (typBURST_EMISSION_LIST_DATAHEADER)

Word
position
in frame

Member name

Member type

Description

7

8

uintSnapshotCenterFre-
quency_Low

uintSnapshotCenterFre-
quency_High

ptypUINT

64-bit Snapshot Center Frequency [Hz] - least significant 32
bits (uintCenterFrequency_Low) followed by most significant 32
bits (uintCenterFrequency_High)

9 uintSnapshotBandwidth

ptypUINT

Snapshot Bandwidth [Hz]

10

11

bigtimeTimeStamp

ptypBIGTIME

64-bit Timestamp [µs] - Absolute time of the first snapshot
sample

12 uintSnapshotLength

ptypUINT

Snapshot duration in ms, of the signal segment in which this
emission list was intercepted

13 uintStatusword

ptypUINT

Status word (bit-coded):
● Bits #31 to #1 - Reserved (must be set to 0)
● Bit #0 - Snapshot end flag

– 1 indicates the end of emission of the current signal
segment

– 0 indicates that emission interception has not yet con-
cluded for the current signal segment

14 uintDatasetCount

ptypUINT

Dataset count: Number of emission entries in this frame

15 uintDatasetLength

ptypUINT

Length, in 32-bit words of each emission entry in this frame

Burst Emission List Data Format

Detector DatastreamsAMMOS Datastreams

76Reference Document 4094.8964.02 ─ 04

The values contained in the data header fields represent the status at the beginning of
the frame. A modification happening during the transmission of a frame will only be
noted in the data header of the next frame.

Burst Emission List Data Body

The Burst Emission List Data body contains the actual Emission Data, defined as a
structure of typBURST_EMISSION_DATA_SET elements. The number of emissions
contained in this structure was given in the Data header element: Dataset count.
Table 9-6: Burst Emission List Data body element (typBURST_EMISSION_DATA_SET)

Word
offset

Member name

Member type

Description

0 uintEmissionID

ptypUINT

Emission identifier

1 uintStartTimeOffset

ptypUINT

Start time of this emission relative to first snapshot sample (bigti-
meSnapshotStartTime) [µs]

2 uintDuration

ptypUINT

Duration of this emission [µs]

3 intCenterFrequencyOffset
_High

ptypINT

Frequency offset [Hz] of this emission, relative to the snapshot
center frequency

4 uintBandwidth

ptypUINT

Bandwidth [Hz] of this emission

5 float_spMagnitude

ptypFLOAT_SP

Average power measured for this emission [dBm]

6 eModulationType

typEMISSION_MOD_TYPE

Determined Modulation type. Following modulations are possi-
ble:
● ekEMISSION_MODULATION_TYPE_UNKNOWN
● ekEMISSION_MODULATION_TYPE_FSK2
● ekEMISSION_MODULATION_TYPE_AM
● ekEMISSION_MODULATION_TYPE_PSK2A
● ekEMISSION_MODULATION_TYPE_PSK2B
● ekEMISSION_MODULATION_TYPE_PSK4A
● ekEMISSION_MODULATION_TYPE_PSK4B
● ekEMISSION_MODULATION_TYPE_PSK8A

7 float_spModulationType
Parameter1

ptypFLOAT_SP

Modulation specific parameter-1 (determined). The symbol
rate [symbols / s] for digital emissions; else meaningless.

8 float_spModulationType
Parameter2

ptypFLOAT_SP

Modulation specific parameter-2 (determined). The frequency
shift [Hz] for FSK emissions; else meaningless.

Burst Emission List Data Format

Statistics DatastreamsAMMOS Datastreams

77Reference Document 4094.8964.02 ─ 04

10 Statistics Datastreams

10.1 Histogram Data Format

The Histogram Data format describes the ekFRH_DATASTREAM__HISTOGRAM_DATA
datastream type.

Histogram Data Frame Structure

The structure of the Histogram Datastream is defined in the
rs_gx40x_histogram_if_defs.h header file.

The Data Frame consists of the global Frame header of type typFRH_FRAMEHEADER,
as described in "Global Frame header" on page 5, followed by the datastream-specific
Frame body.

The corresponding "Frame Type" value from the Frame header for this datastream
type can be found in the global frame types header file:
rs_gx40x_global_frame_types_if_defs.h.

The Frame body consists of: the Data header which describes the datastream payload
and the Data body which contains the actual datastream payload.

Fig. 10-1: Histogram Data frame format

Histogram Data Header

The Data header describes the datastream payload (such as number of Data samples
contained in this frame), and contains common parameters of the Data samples.

The Histogram Data header structure, of type typHISTOGRAM_HEADER, is described
in the following table (Data header length = 8).

Histogram Data Format

Statistics DatastreamsAMMOS Datastreams

78Reference Document 4094.8964.02 ─ 04

Table 10-1: Histogram Data header (typHISTOGRAM_HEADER)

Word
position
in frame

Member name

Member type

Description

7

8

bigtimeTimeStamp

ptypBIGTIME

64-bit Timestamp [µs] - Absolute time of the first sample of the data
from which the histogram data was calculated

9 uintStatusword

ptypUINT

Status word (bit-coded):
● Bits #31 to #5 - Reserved
● Bits #4 to #0 - indicates the Histogram data type. Possible val-

ues are given by the eHISTOGRAM_DATA enumeration:
– ekHISTOGRAM_DATA_DURATION = 0x1
– ekHISTOGRAM_DATA_FREQUENCY = 0x2
– ekHISTOGRAM_DATA_BANDWIDTH = 0x3
– ekHISTOGRAM_DATA_LEVEL = 0x4
– ekHISTOGRAM_DATA_SYMBOLRATE = 0x5
– ekHISTOGRAM_DATA_SHIFT = 0x6
– ekHISTOGRAM_DATA_MODULATION_TYPE = 0x7
– ekHISTOGRAM_DATA_TIMING = 0x8
– ekHISTOGRAM_DATA_ENCHANCED_TIMING = 0x9

10

to

13

histBorders

typHistogramBorders

Lower and Upper Boundaries of the Histogram define the Histo-
gram range on the x-axis (the intermediate values of the Histogram
bins are calculated from the number of bins available). This parame-
ter is defined as a union that contains two structure elements for 64-
bit values and float values, respectively (which element is used in this
frame is determined by the Statusword - Histogram data type field)
● stru_uint64 - element used for Histogram data types: 1, 2 and

3.
● stru_float_sp - element used for Histogram data types: 4, 5,

6, 8 and 9

Note: In case of Histogram data type number 7 (Modulation Type)
there are no Boundaries definitions because the Histogram consists
of a predefined number of bins representing the modulation types
given by the enumeration typEMISSION_MOD_TYPE (see definition
from Burst Emission List Data format table 9-6). For this case, the
information contained in the four words histBorders element is not
relevant and should be skipped.

{ stru_uint64 64-bit format for Lower and Upper Histogram Boundaries

Note: for C++ implementation the 64-bit format start and end values
are provided using the member functions: getStartValue() and
getEndValue()

 {

uintStart_Low

ptypUINT 64-bit - Start value for histogram bins: least significant 32 bits (uint-
Start_Low) followed by most significant 32 bits (uintStart_High)

uintStart_High

ptypUINT

uintEnd_Low

ptypUINT
64-bit - End value for histogram bins: least significant 32 bits (uin-
tEnd_Low) followed by most significant 32 bits (uintEnd_High)uintEnd_High

ptypUINT

}

Histogram Data Format

Statistics DatastreamsAMMOS Datastreams

79Reference Document 4094.8964.02 ─ 04

Word
position
in frame

Member name

Member type

Description

stru_float_sp Floating point single precision format for Lower and Upper Histogram
Boundaries. This information is carried in the first two words of the
four words histBorders element.

 {

fStart

ptypFLOAT_SP

Floating point Start value for histogram bins

fEnd

ptypFLOAT_SP

}
Floating point End value for histogram bins

}

14 uintBinCount

ptypUINT

Number of histogram bins to follow this header

Note: In case of Histogram data type number 7 (Modulation Type) the
number of bins equals the size of the enumeration typEMIS-
SION_MOD_TYPE.

The values contained in the data header fields represent the status at the beginning of
the frame. A modification happening during the transmission of a frame will only be
noted in the data header of the next frame.

Histogram Data Body

The Histogram Data body contains the actual Histogram Bins Data. The number of his-
togram bins to be read in the Data body was given by the Data header
typHISTOGRAM_HEADER.uintBinCount parameter. Each histogram bin value is
represented on a 32-bit word of type ptypUINT. The position on the x-axis of the his-
togram bins can be calculated from the Lower (L) and Upper (U) Boundaries and the
total number of bins that as specified in the Data header. The bin width is given by:
(U-L)/uintBinCount.

10.2 Hop Density Waterfall Data Format

The Hop Density Waterfall Data format describes the
ekFRH_DATASTREAM__HOP_DENSITY_WATERFALL_DATA datastream type.

Hop Density Waterfall Data Frame Structure

The structure of the Hop Density Waterfall Datastream is defined in the
rs_gx40x_hop_density_waterfall_if_defs.h header file.

The Data Frame consists of the global Frame header of type typFRH_FRAMEHEADER,
as described in "Global Frame header" on page 5, followed by the datastream-specific
Frame body.

Hop Density Waterfall Data Format

Statistics DatastreamsAMMOS Datastreams

80Reference Document 4094.8964.02 ─ 04

The corresponding "Frame Type" value from the Frame header for this datastream
type can be found in the global frame types header file:
rs_gx40x_global_frame_types_if_defs.h.

The Frame body consists of: the Data header which describes the datastream payload
and the Data body which contains the actual datastream payload.

Fig. 10-2: Hop Density Waterfall Data frame format

Hop Density Waterfall Data Header

The Data header describes the datastream payload (such as number of Data samples
contained in this frame), and contains common parameters of the Data samples.

The Hop Density Waterfall Data header structure, of type typHDW_HEADER, is descri-
bed in the following table (Data header length = 10).

Table 10-2: Hop Density Waterfall Data header (typHDW_HEADER)

Word
position
in frame

Member name

Member type

Description

7

8

bigtimeTimeStamp

ptypBIGTIME

64-bit Timestamp [µs] - Absolute time of the first sample of the
data from which the hop density waterfall data was calculated

9 uintStatusword

ptypUINT

Status word: reserved (currently unused, has value 0).

10

11

uintCenterFrequency_Low

uintCenterFrequency_High

ptypUINT

64-bit Center Frequency of the of hop density waterfall [Hz] -
least significant 32 bits (uintCenterFrequency_Low) fol-
lowed by most significant 32 bits
(uintCenterFrequency_High)

12 uintBandwidth

ptypUINT

Bandwidth [Hz] of the hop density waterfall

13 uintSnapshotDuration

ptypUINT

Duration of snapshot represented by the bins within this
frame

14 uintNumTimeBins

ptypUINT

Number of time bins in each waterfall column

15 uintNumFrequencyBins

ptypUINT

Number of frequency bins in each waterfall row

16 uintNumIndexValuePairs

ptypUINT

Number of pairs - each pair consists of an index (of a vector
structure) and a (non-zero) value

Hop Density Waterfall Data Format

Statistics DatastreamsAMMOS Datastreams

81Reference Document 4094.8964.02 ─ 04

The values contained in the data header fields represent the status at the beginning of
the frame. A modification happening during the transmission of a frame will only be
noted in the data header of the next frame.

Hop Density Waterfall Data Body

The Hop Density Waterfall Data body contains the actual Hop Density Waterfall Data -
defined as an array consisting of uintNumIndexValuePairs elements of type
typHDW_IndexValuePair.

Each element consists of an (index, value) pair as described in the table below:

Table 10-3: Hop Density Waterfall Data structure (typHDW_IndexValuePair)

Member name

Member type

Description

uintIndex

ptypUINT

Index within the vectorized matrix where a non zero value (float_spValue)
is located

float_spValue

ptypFLOAT_SP

The actual value at uintIndex position

How to use the Hop Density Waterfall Data:

Create a zero initialized vector V with size =uintNumTimeBins *
uintNumFrequencyBins.

Set the vector elements using the Index-Value pairs in the Data body. The uintIndex
represents the location of the float_spValue inside the vector V.

The Hop Density Waterfall is then represented as a matrix by reordering the vector V
into a matrix with uintNumTimeBins rows and uintNumFrequencyBins columns.

Hop Density Waterfall Data Format

PDW and IQDW DatastreamsAMMOS Datastreams

82Reference Document 4094.8964.02 ─ 04

11 PDW and IQDW Datastreams

11.1 Pulse Descriptor Words (PDW) Datastream

The Pulse Descriptor Words Data format describes the
ekFRH_DATASTREAM__PULSE_DESCRIPTION_WORD_DATA datastream type.

PDW Data Frame Structure

The structure of the PDW Datastream is defined in the
rs_tpa_pdw_header_if_defs.h header file.

The Data Frame consists of the global Frame header of type typFRH_FRAMEHEADER,
as described in "Global Frame header" on page 5, followed by the datastream-specific
Frame body.

The corresponding "Frame Type" value from the Frame header for this datastream
type can be found in the global frame types header file:
rs_gx40x_global_frame_types_if_defs.h.

The Frame body consists of: the Data header which describes the datastream payload
and the Data body which contains the actual datastream payload.

Fig. 11-1: PDW Data frame format

PDW Data Header

The PDW Data header structure, of type struPDW_HEADER, is described in the follow-
ing table (total Data header length = 2 [32-bit words]).

Table 11-1: PDW Data header structure (struPDW_HEADER)

Word
position
in frame

Member name

Member type

Description

7 nrOfPdws

unsigned int

Number of PDWs contained in this frame

8 sizeOfPdw

unsigned int

Size of PDW - the size in 32-bit words of a PDW

Pulse Descriptor Words (PDW) Datastream

PDW and IQDW DatastreamsAMMOS Datastreams

83Reference Document 4094.8964.02 ─ 04

PDW Data Body

The PDW Data body is defined as an array of PDWs, of type CPackedPDW. The array
size is given by Number of PDWs information in the Data header.

Fig. 11-2: PDW structure (word 0 to 7, bits 31 to 0)

Table 11-2: PDW data format description

Member name

Member type

Description

m_u64TOA

unsigned __int64

Time Of Arrival [ns] - Time is represented as a count of nanoseconds elapsed
since 01.01.1970, 0:00 h UTC (UTC as described in: "RECOMMENDA-
TION ITU-R TF.460-5, STANDARD-FREQUENCY and TIME-SIGNAL EMIS-
SIONS, 1970-1974-1978-1982-1986-1997").

m_u32Res_CFinKHz

unsigned int

● Bits #31 to #27 - PDW Format identifier
● Bits #26 to #0 - Center Frequency of signal in [kHz], max 134 [GHz]

Field contains ‘0’ if no valid Center Frequency could be determined.

m_u32Flags_Marks_PW

unsigned int

● Bit #31 - Valid Flag (1 - PDW is valid, 0 - PDW invalid)
● Bit #30 - Pulse Flag (1 - signal is a pulse, 0 - signal is CW and the signal

was split into multiple PDWs)
● Bit #29 - Level Unit (LU) Flag (1 - level unit is [dBµV], 0 - level is a field

strength in [dBµV/m])
● Bit #28 - Signal no Start (SNS) Flag (1- signal started before TOA of

PDW, 0 - pulse start detected successfully)
● Bit #27 - Signal no End (SNE) Flag (1 - signal stops after TOA + PW of

the PDW, 0 - pulse end detected successfully)
● Bits #26 to #25 - Reserved - Marker Bits for Blanking
● Bits #24 to #0 - Pulse Width (PW) in [ns] defined on 25-bit field, field

contains 0 if no valid Pulse Width could be determined

m_u32BW_Level

unsigned int

● Bits #31 to #12 - Frequency Shift or Bandwidth of signal in [kHz] on 20-
bit field, max 1 [GHz], Field contains ‘1048575’ (i.e. binary all ’1’s) if no
value could be determined

● Bits #11 to #0 - estimated Pulse Level in [dBµV] or Pulse Field Strength
in [dBµV/m], (unit indicated by level unit flag on word 3) on 12-bit field.
Range: [-200.0…200] in 0.1 steps, use sign extension]. Range
[−200.0 dBµV .. +200.0 dBµV] or [−200.0 dBµV/m .. +200.0 dBµV/m. Field
contains ‘-204.8’ (i.e. binary ’1000 0000 0000’) if no valid Level could be
determined.

Pulse Descriptor Words (PDW) Datastream

PDW and IQDW DatastreamsAMMOS Datastreams

84Reference Document 4094.8964.02 ─ 04

Member name

Member type

Description

m_u32IO_DFE_Mod_
Chip_Low

unsigned int

● Bit #31 - IO-Flag (1 - signal is inside Region of interest, 0 - signal is out-
side Region of Interest, unknown or inapplicable)

● Bits #30 to #25 - DF Azimuth Confidence. Range [0° - 6.2°] in
0.1° steps. Field contains ‘6.3’ (i.e. binary ‘11 1111’) if no valid DF Confi-
dence could be determined.

● Bits #24 to #20 - Modulation ID as given by the enumeration
ePDWModType.
00000: unknown
00001: unmodulated
00010: FM
00011: LFM
00100: PSK2
00101: PSK3
00110: PSK4
00111: PSKm
01000: NLFM
01001: SFM
01010: TFM
01011: pulse too short
Others : reserved.

● Bits #19 to #4 - Reserved
● Bits #3 to #0 - Sector Reference antenna sector number of the measure-

ment. If Sector is unknown or inapplicable then this field is set to 0.

m_u32POL_DFQ_EOA_
AOA_Low

unsigned int

● Bits #31 to #30 - Polarity (00 - horizontal, 01 - vertical, 10 - left hand cir-
cular (counter-clockwise), 11 - right hand circular (clockwise)). If a device
or an antenna in use does not support Polarization determination then this
field is set to binary 00

● Bits #29 to #23 - Direction Finding (DF) Quality. Range: [0-100%]. If
no valid DF Quality could be determined then this field is set to 0.

● Bits #22 to #12 - estimated Elevation of signal. Range: [-90°, 90°] in
0.1° steps, use sign extension. Field contains ‘-102.4’ (binary 100 0000
0000) if no valid Elevation could be determined.

● Bits #11 to #0 - estimated Azimuth of signal. Range: [0.0°, 359.9°]
in 0.1° steps. Field contains ‘409.5’ (binary 1111 1111 1111) if no
valid Azimuth could be determined.

m_u32Reserved2_Low

unsigned int

● Bits #31 to #28 - Number of the Channel on which the pulse was detec-
ted. If no or only one channel is supported then this field is set to 0.

● Bits #27 to #0 - Reserved integer for future extensions. All bits set to 0

11.2 IQ Descriptor Words (IQDW) Datastream

This document concerns the data format description of the IQDW data packets provi-
ded by R&S receivers such as WPU500.

Two formats are supported:

● IQDW with 16-bit samples
● IQDW with 32-bit samples

In each case the AMMOS Frame Header and AMMOS Data Header are identical. Only
the TX Datablock formats are different.

IQ Descriptor Words (IQDW) Datastream

PDW and IQDW DatastreamsAMMOS Datastreams

85Reference Document 4094.8964.02 ─ 04

11.2.1 AMMOS Headers

Byte Number Element Description

AMMOS Frame Header (24 bytes)

0x00 - 0x03 4 bytes

Magic_Word

A word used to identify a Tx_Block

(0xFB746572)

0x04 - 0x07 4 bytes

Frame_Length

Overall Tx_Block length counted in 32- bit
words

0x08 - 0x0B 4 bytes

Frame_Count

A counter which counts the AMMOS frames in
increasing order. This counter can be used to
detect missing blocks. The counter starts with
0, when transmission is started.

0x0C - 0x0F 4 bytes

Frame_Type

Used to identify the AMMOS frame type.
0x201 is used for IQDW data with 16-bit IQ
samples.

0x10 - 0x13 4 bytes

Data_Header_Length

Length of AMMOS data header counted in 32-
bit words: 0x0C (12)

0x14 - 0x17 4 bytes

Reserved

b[31:01] = reserved (0) b[0] = Mask for extrac-
tion 'frame size may exceed
kFRH_FRAME_LENGTH_MAX'

AMMOS Data Header (48 bytes)

0x18 - 0x1B 4 bytes

ACH_Freq_Low

Current analysis channel frequency in Hz

0x1C - 0x1F 4 bytes

ACH_Freq_High

0x20 - 0x23 4 bytes

ACH_Bandwidth

Current analysis channel 3dB bandwidth in Hz
(with 0-padding)

0x24 - 0x27 4 bytes

Samplerate

Sampling rate given in Hz

Remark: The final sampling rate for the IQ-
data is derived by:

Samplerate * Interpolation / Decimation

0x28 - 0x2B 4 bytes

Interpolation_Decimation

Interpolation/Decimation Factor referred to the
ADC signal sample rate.

Interpolation numerator (lower 16 bit) Decima-
tion denominator (upper 16 bit)

0x2C - 0x2F 4 bytes

Antenna_Voltage_Ref

Antenna reference voltage given in 0.1dBuV

0x30 - 0x33 4 bytes

StartTime_Low

Indicates the reference time (StartTime) of the
datastream. It ss counted in nanoseconds rel-
atively to the date 1.1.1970.

0x34 - 0x37 4 bytes

StartTime_High

IQ Descriptor Words (IQDW) Datastream

PDW and IQDW DatastreamsAMMOS Datastreams

86Reference Document 4094.8964.02 ─ 04

Byte Number Element Description

0x38 - 0x3B 4 bytes

SampleCount_Low

This counter indicates the sample number of
the first sample from the data block relatively
to the reference time (StartTime) of the data-
stream.

Time Stamp can be calculated with this for-
mula: Timestamp [ns] = StartTime + (Sample-
Count * 10e9 * Decimation / Samplerate *
Interpolation)

0x3C - 0x3F 4 bytes

SampleCount_High

0x40 - 0x43 4 bytes

K_Factor

kFactor - Correction factor of the current
antenna, given in 0.1dB/m. Used to determine
the field strength (in [dBμV/m]) at the antenna
from the voltage level at the antenna input of
the receiver. Contains antenna gain, cable
attenuation, antenna switch matrix attenuation
and anything else from air to antenna input.
(the value 0x80000000 is used if no kFactor is
defined).

0x44 - 0x47 4 bytes

Datablock_Status_Word

b[31:16] = 0xFFFF

b[15:02] = reserved

b01 = blanking

b00 = signal invalid

TX Datablock:

See the following chapter for descriptions of the TX Datablocks in 16-bit and 32-bit formats

11.2.2 TX Datablocks

Datablock with 16-bit samples

Byte Number Element Description

TX Datablock:

0x48 – 0x67 32 bytes

PDW

PDW of this IQDW. See PDW specification.

0x68 – 0x6B 4 bytes

Samples

IQ samples used to calculate the above PDW.

Upper 16-bit Imaginary component

Lower 16-bit Real component

... IQ samples continued ... until Frame_Length * 4 bytes

Datablock with 32-bit samples

Byte Number Element Description

TX Datablock:

0x48 – 0x67 32 bytes

PDW

PDW of this IQDW. See PDW specification.

IQ Descriptor Words (IQDW) Datastream

PDW and IQDW DatastreamsAMMOS Datastreams

87Reference Document 4094.8964.02 ─ 04

Byte Number Element Description

0x68 – 0x6B 4 bytes

Samples

IQ samples used to calculate the above PDW.

0x6C – 0x6F 4 bytes Sample (Imaginary com-
ponent)

... IQ samples continued ... until Frame_Length * 4 bytes

IQ Descriptor Words (IQDW) Datastream

ExtrasAMMOS Datastreams

88Reference Document 4094.8964.02 ─ 04

A Extras

A.1 Data types definitions

The datastreams interface library defines the following global data types in the
rs_gx40x_p_types.h file:

Type name Description

ptypBOOL 32-bit type used for boolean data type. Values: pkFALSE=0 and
pkTRUE=1

ptypUINT 32-bit type used for unsigned integers (range: 0 to
pkUINT_MAX=4294967295). The definition of this type ensures that it is
represented on 32 bits independent of the used platform.

ptypINT 32-bit type used for signed integers (range: pkINT_MIN=-2147483648
to pkINT_MAX=2147483647)

ptypFLOAT_SP 32-bit type used for IEEE 754/854 compatible floating point single preci-
sion formats.

ptypPACKEDCOMPLEXI16 32-bit type containing a complex number made up of two 16-bit
(signed)integer numbers. The 16 most significant bits of the packed com-
plex type contain the real part of the complex number. The 16 least signifi-
cant bits of the packed complex type contain the imaginary part of the
complex number

ptypCHAR 32-bit type containing one character. The 8 least significant bits of this 32-
bit type contain one 8-bit character (range: pkCHAR_MIN=-2147483648
to pkCHAR_MAX=2147483647)

ptypPACKEDCHAR 32-bit type containing up to four 8-bit characters packed together into a
32-bit word. The 8 least significant bits of this 32-bit word contain the first
8-bit character and so on. The type accepts only C-strings (null termina-
ted).

ptypPACKEDUNICODE 32-bit type containing up to two 16-bit unicode characters packed
together into a 32-bit word. The 16 least significant bits of this 32-bit word
contain the first 16-bit character of the two characters. The type accepts
only C-strings (null terminated).

ptypBIGTIME 64-bit type used for the representation of time, implemented as a union
whose members vary on differing platforms. Time is represented as a
count of microseconds elapsed since 01.01.1970, 0:00 h UTC (UTC as
described in: "RECOMMENDATION ITU-R TF.460-5, STANDARD-FRE-
QUENCY and TIME-SIGNAL EMISSIONS,
1970-1974-1978-1982-1986-1997").

Members for 32bit platform:
structTimeInTwoWords.uintTime_LoOrderBits and
structTimeInTwoWords.uintTime_HiOrderBits
Members for 64bit platform: uint64TimeInOneWord

Data types definitions

ExtrasAMMOS Datastreams

89Reference Document 4094.8964.02 ─ 04

Type name Description

ptypBIGTIME_NS Same as above but here time is represented in nanoseconds.

pmtypMSG_ENUM represents a macro that is used for definition of enumeration types:
pmtypMSG_ENUM(enumerator, enumtyp). This macro ensures a 32-
bit type enumeration value on all platforms.

The enumeration data type (enumtyp) is based on an predefined enu-
meration (enumerator) if the enumerator values are represented as 32-
bit numbers on the current platform:

typedef enum enumerator enumtyp
Otherwise the enumtyp will be defined as ptypINT:

typedef ptypINT enumtyp

A.2 File Types

File ending File type Description

.dat AMREC recording Datastream recording on an AMREC
device (datastream type is specified in the
"Data type" information field from the meta-
data). Each recording has associated infor-
mation files that have the same file name
as the recording but with different exten-
sions (.metadata, .idx, .bkm, .his)

.metadata Metadata of the recording Record information such as data type,
recording time, etc.

.idx Index data of the recording The index contains key data about the
record that can be used for navigation in
the recording

.bkm Bookmarks of the recording Bookmarks are identifiers in the recording
data expressed as offsets from beginning
of recording

.his History data of the recording Each successful call will result in a history
comment related to the time when it has
been made

.riq Raw I/Q data I/Q datastream in EB200 format

.iq.tar Packed I/Q data I/Q data files packed using .tar archiving
format that are generated by
Rohde & Schwarz® Spectrum Analyzers

.aid AMMOS Intermediate (IF) data Intermediate Frequency (baseband I/Q)
datastream

.adem,

.aud
AMMOS Analog Demodulator, Audio data Audio datastream generated by an Analog

Demodulator

.daud AMMOS Digital Audio data Audio datastream generated by a Digital
Demodulator

.asd AMMOS Spectrum data FFT Spectrum datastream generated by a
Fixed Frequency Processing module

File Types

ExtrasAMMOS Datastreams

90Reference Document 4094.8964.02 ─ 04

File ending File type Description

.sym AMMOS Symbol data Demodulated Symbols datastream gener-
ated by a Digital Demodulator

.inst AMMOS Instantaneous Data Demodulated Instantaneous Data data-
stream generated by a Digital Demodulator

.img AMMOS Image data Image datastream generated by a Digital
Demodulator or Decoder

.dtx AMMOS Decoded Text data Decoded Text datastream generated by a
Decoder

.tsr AMMOS Transmission System Result data TSR datastream generated by a Digital
Demodulator

.hist AMMOS Histogram data Histogram datastream generated by Fre-
quency Hopping module

.hdw AMMOS Hop Density Waterfall data HDW datastream generated by Frequency
Hopping module

.pdw AMMOS Pulse Description Words Pulse Description Words (PDW) generated
by a WPU or TPA client

.ppdw Pure Pulse Description Words Continuous PDW stream without frame
header information, i.e. not frame based as
the .pdw format

.iqdw I/Q data for Description Words Contains the I/Q data corresponding to the
Pulse Description Words of a .pdw file
(generated along a .pdw file if PDW detail
is needed)

.idx Index data Indexes of PDWs (start position and data
length) in a .iqdw file (always generated
along a .iqdw file)

.bin Binary data Contains bitstreams; used for importing bit-
streams into CA250 from third party prod-
ucts

.bi8 Byte stream data Contains symbol streams where each sym-
bol consists of 8 bits; used for importing
symbol streams into CA250 from third party
products

.stx Results data Universal data format for CA250 result data
(bitstreams, symbol streams, diagrams,
decoded text, result tables)

.wav Wave file Waveform Audio File Format

.wv Rohde & Schwarz® wave file Wave audio format used by
Rohde & Schwarz® Signal Generators

.apj CA1xx Job file Job settings in XML format

.gxjob GX4xx Job file Legacy format for Job settings in XML for-
mat (for GX430 up to version 2.82)

.isprj CA100IS Project Project settings in XML format

.js JavaScript Script file used for Automatic Processing
function

File Types

ExtrasAMMOS Datastreams

91Reference Document 4094.8964.02 ─ 04

File ending File type Description

.py Python Script Script file for the control of CA250

.xml XML Description file Used for different reports, configurations,
layouts or list types

.cfg XML Configuration file Used for configuration descriptions

.pgxml ParamGUI XML Description file Used for GUI element descriptions

.QRSXml XML Settings file Used to save user specific settings of an
application that will be used every time the
application is started

For CA250 - used to save session track-
ings and reports for connection to RAMON
Report edit.

.wcxml Waterfall colors XML settings file

.csv Comma Separated Value Used for different log or result list types

.txt ASCII text file Used for different log, decoded result text
types, or symbol streams from third party
products

.log Log file Text file for different log types

.png Portable Network Graphics Bitmap image file format

File Types

GlossaryAMMOS Datastreams

92Reference Document 4094.8964.02 ─ 04

Glossary
Symbols

µs: Microseconds

µV: Microvolts

A
ADC: Analog Digital Converter

AM: Amplitude Modulation

B
byte: Digital information unit with size = 8 bits

D
dB: Decibel

dB/m: Decibel per meter (for attenuation coefficients)

F
Fix: Fixed point - indicates a signed fixed point fractional number.

FM: Frequency Modulation

I
IF: Intermediate frequency

IM: The Imaginary part of a complex number

ISB: Independent Side Band

L
LSB: Lower Sideband

N
n/a: Not applicable

ns: Nanoseconds

P
ptypBIGTIME: Time representation [µs] data type (details: chapter A.1, "Data types
definitions", on page 88).

GlossaryAMMOS Datastreams

93Reference Document 4094.8964.02 ─ 04

ptypBIGTIME_NS: Time representation [ns] data type (details: chapter A.1, "Data
types definitions", on page 88).

ptypBOOL: Boolean data type (details: chapter A.1, "Data types definitions",
on page 88).

ptypCHAR: Character data type (details: chapter A.1, "Data types definitions",
on page 88).

ptypFLOAT_SP: Floating point with single precision data type (details: chapter A.1,
"Data types definitions", on page 88).

ptypINT: Integer data type (details: chapter A.1, "Data types definitions", on page 88).

ptypPACKEDCHAR: Packed characters data type (details: chapter A.1, "Data types
definitions", on page 88).

ptypPACKEDUNICODE: Packed unicode characters data type (details: chapter A.1,
"Data types definitions", on page 88).

ptypUINT: Unsigned integer data type (details: chapter A.1, "Data types definitions",
on page 88).

R
RE: The Real part of a complex number

U
UL: Unsigned long

USB: Upper Sideband

IndexAMMOS Datastreams

94Reference Document 4094.8964.02 ─ 04

Index

A

Audio Data .. 20
Data header .. 20
Frame structure .. 20
Sample formats ...22

B

Burst Emission List Data ... 74
Data body ... 76
Data header .. 75
Frame structure .. 74

D

Datastream type
ekFRH_DATASTREAM__AUDIODATA 20
ekFRH_DATASTREAM__BURST_EMISSIONS_LIST
.. 74

ekFRH_DATASTREAM__DDCE
_IFDATA_16RE_16IM_FIX .. 16
ekFRH_DATASTREAM__DDCE
_IFDATA_32RE_32IM_FIX .. 16
ekFRH_DATASTREAM__DECODER_TEXT_DATA . 49
ekFRH_DATASTREAM__EMISSION_LIST_DATA ... 70
ekFRH_DATASTREAM__HF_SCF_DATA 30
ekFRH_DATASTREAM__HF_SFF_DATA 30
ekFRH_DATASTREAM__HF_SSR_DATA 32
ekFRH_DATASTREAM__HF_TUNING_INDICA-
TOR_DATA ...29
ekFRH_DATASTREAM__HISTOGRAM_DATA77
ekFRH_DATASTREAM__HOP_DENSITY_WATER-
FALL_DATA ..79
ekFRH_DATASTREAM__IFDATA _16RE_16IM_FIX ..8
ekFRH_DATASTREAM__IFDATA _16RE_16RE_FIX .8
ekFRH_DATASTREAM__IFDATA _32RE_32IM_FIX ..8
ekFRH_DATASTREAM__IFDATA
_32RE_32IM_FIX_RESCALED 8
ekFRH_DATASTREAM__IFDATA
_32RE_32IM_FLOAT_RESCALED 8
ekFRH_DATASTREAM__IMAGEDATA 46
ekFRH_DATASTREAM__INSTANTANEOUSDATA .. 43
ekFRH_DATASTREAM__LEVELDATA 27
ekFRH_DATASTREAM__PULSE_DESCRIP-
TION_WORD_DATA .. 82
ekFRH_DATASTREAM__SCAN__LEVEL 24
ekFRH_DATASTREAM__SCAN__LEVEL_TUNING . 24
ekFRH_DATASTREAM__SCAN__TUNING 24
ekFRH_DATASTREAM__SEGMENTATION_SPEC-
DATA_FLOAT ...37
ekFRH_DATASTREAM__SPECDATA_16BIT 34
ekFRH_DATASTREAM__SPECDATA_FLOAT 34
ekFRH_DATASTREAM__SPECTRALDETEC-
TOR_DATA ...72
ekFRH_DATASTREAM__SYMBOLDATA 39
ekFRH_DATASTREAM__TIMEDOMAIN_DATA 42
ekFRH_DATASTREAM__TRANSMISSION_SYS-
TEM_RESULT_DATA .. 51
ekFRH_DATASTREAM__TUNER_PIFPAN_DATA ... 28
Statistics Data ... 77

Decoded Text Data ... 49
Data header .. 50
Frame structure .. 49
Sample formats ...50

E

EM010 SCF and SFF Scan Data 30
Data body ... 32
Data header .. 31
Frame structure .. 30

EM010 SSR Status Data ...32
Data structure ... 33
Frame structure .. 32

EM010 Tuning Indicator Data ... 28
Datablock structure ... 29
Frame structure .. 29

Emission List Data .. 70
Data body ... 71
Data header .. 70
Frame structure .. 70

F

Frame format ...5
Data Header Length ... 6
Frame body ...6
Frame Count ... 6
Frame header: typFRH_FRAMEHEADER 5
Frame Length ... 6
Frame Type .. 6

H

Histogram Data ... 77
Data body ... 79
Data header .. 77
Frame structure .. 77

Hop Density Waterfall Data ... 79
Data body ... 81
Data header .. 80
Frame structure .. 79

I

IF Data .. 8
Data header .. 9
Datablock header ..13
Frame structure .. 8
Sample formats ...13

IF DDCE Data ... 16
Data header .. 17
Datablock header ..18
Frame structure .. 16
Sample formats ...19

Image Data ..46
Data header .. 47
Frame structure .. 46
Sample formats ...48

Instantaneous Data ... 43
Data body ... 45
Data header .. 44
Frame structure .. 43

IndexAMMOS Datastreams

95Reference Document 4094.8964.02 ─ 04

P

PDW Data ... 82
Data header .. 82
Frame structure .. 82
Sample formats ...83

ptyp Data types ... 88
Pulse Description Data ..82, 84

S

Scan Data ... 24
Data body types .. 25
Data header .. 25
Datablock header ..26
Frame structure .. 24
Sample formats ...26

Segmentation Spectrum Data ... 37
Data header .. 37
Frame structure .. 37
Sample formats ...38

Signal Level Indicator Data ... 27
Data structure ... 27
Frame structure .. 27

Spectral Detector List Data ... 72
Data body ... 73
Data header .. 72
Frame structure .. 72

Spectrum Data .. 34
Data header .. 34
Frame structure .. 34
Sample formats ...36

Symbol Data ..39
Data header .. 39
Frame structure .. 39
Sample format .. 41

T

Time Domain Data .. 42
Data body ... 43
Data header .. 42
Frame structure .. 42

Transmission System Result Data 51
ACARS ... 63
ASCII .. 54
ATIS .. 54
CLOVER ... 66
Data body ... 53
Data header .. 51
F7W .. 67
FMS-BOS ... 54
Frame structure .. 51
MPT1327 .. 62
PACKET_RADIO .. 59
PACTOR ... 64
PDU .. 69
POCSAG .. 58
UNICODE ... 54
ZVEI .. 56
ZVEI-VDEW .. 57

Tuner PIF Panorama Data .. 28
Frame structure .. 28

	Contents
	1 Generic Format of Datastreams
	2 IF (Baseband) Datastreams
	2.1 IF Data Format
	2.2 IF DDCE Data Format

	3 Audio Datastream
	4 Tuner Datastreams
	4.1 Scan Data Format
	4.2 Signal Level Indicator Data Format
	4.3 Tuner PIF Panorama Data Format
	4.4 Tuner HF (EM010) Data Formats
	4.4.1 EM010 Tuning Indicator Data Format
	4.4.2 EM010 Scan Channel Found (SCF) and EM010 Scan Frequency Found (SFF) Data Formats
	4.4.3 EM010 Scan Sweep Restarted (SSR) Data Format

	5 Spectrum Datastreams
	5.1 Spectrum Data Format
	5.2 Segmentation Spectrum Data Format

	6 Symbol Datastreams
	7 Time Domain Datastreams
	7.1 Time Domain Data Format
	7.2 Instantaneous Data Format

	8 Decoder Datastreams
	8.1 Image Data Format
	8.2 Decoded Text Data Format
	8.3 Transmission System Result (TSR) Data Formats

	9 Detector Datastreams
	9.1 Emission List Data Format
	9.2 Spectral Detector List Data Format
	9.3 Burst Emission List Data Format

	10 Statistics Datastreams
	10.1 Histogram Data Format
	10.2 Hop Density Waterfall Data Format

	11 PDW and IQDW Datastreams
	11.1 Pulse Descriptor Words (PDW) Datastream
	11.2 IQ Descriptor Words (IQDW) Datastream
	11.2.1 AMMOS Headers
	11.2.2 TX Datablocks

	A Extras
	A.1 Data types definitions
	A.2 File Types

	 Glossary
	 Index

